数据结构——布隆计算器

文章目录

      • 1.什么是布隆过滤器?
      • 2.布隆过滤器的原理介绍
      • 3.布隆过滤器使用场景
      • 4.通过 Java 编程手动实现布隆过滤器
      • 5.利用Google开源的 Guava中自带的布隆过滤器
      • 6.Redis 中的布隆过滤器
        • 6.1介绍
        • 6.2使用Docker安装
        • 6.3常用命令一览
        • 6.4实际使用

1.什么是布隆过滤器?

布隆过滤器(Bloom Filter)是一个叫做 Bloom 的老哥于1970年提出的。我们可以把它看作由二进制向量(或者说位数组)和一系列随机映射函数(哈希函数)两部分组成的数据结构。相比于我们平时常用的的 List、Map 、Set 等数据结构,它占用空间更少并且效率更高,但是缺点是其返回的结果是概率性的,而不是非常准确的。理论情况下添加到集合中的元素越多,误报的可能性就越大。并且,存放在布隆过滤器的数据不容易删除。

在这里插入图片描述

位数组中的每个元素都只占用 1 bit ,并且每个元素只能是 0 或者 1。这样申请一个 100w 个元素的位数组只占用 1000000Bit / 8 = 125000 Byte = 125000/1024 kb ≈ 122kb 的空间。

总结:一个名叫 Bloom 的人提出了一种来检索元素是否在给定大集合中的数据结构,这种数据结构是高效且性能很好的,但缺点是具有一定的错误识别率和删除难度。并且,理论情况下,添加到集合中的元素越多,误报的可能性就越大。

2.布隆过滤器的原理介绍

当一个元素加入布隆过滤器中的时候,会进行如下操作:

  1. 使用布隆过滤器中的哈希函数对元素值进行计算,得到哈希值(有几个哈希函数得到几个哈希值)。
  2. 根据得到的哈希值,在位数组中把对应下标的值置为 1。

当我们需要判断一个元素是否存在于布隆过滤器的时候,会进行如下操作:

  1. 对给定元素再次进行相同的哈希计算;
  2. 得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。

举个简单的例子:

在这里插入图片描述

如图所示,当字符串存储要加入到布隆过滤器中时,该字符串首先由多个哈希函数生成不同的哈希值,然后在对应的位数组的下表的元素设置为 1(当位数组初始化时 ,所有位置均为0)。当第二次存储相同字符串时,因为先前的对应位置已设置为 1,所以很容易知道此值已经存在(去重非常方便)。

如果我们需要判断某个字符串是否在布隆过滤器中时,只需要对给定字符串再次进行相同的哈希计算,得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。

不同的字符串可能哈希出来的位置相同,这种情况我们可以适当增加位数组大小或者调整我们的哈希函数。

综上,我们可以得出:布隆过滤器说某个元素存在,小概率会误判。布隆过滤器说某个元素不在,那么这个元素一定不在。

3.布隆过滤器使用场景

  1. 判断给定数据是否存在:比如判断一个数字是否存在于包含大量数字的数字集中(数字集很大,5亿以上!)、 防止缓存穿透(判断请求的数据是否有效避免直接绕过缓存请求数据库)等等、邮箱的垃圾邮件过滤、黑名单功能等等。
  2. 去重:比如爬给定网址的时候对已经爬取过的 URL 去重。

4.通过 Java 编程手动实现布隆过滤器

我们上面已经说了布隆过滤器的原理,知道了布隆过滤器的原理之后就可以自己手动实现一个了。

如果你想要手动实现一个的话,你需要:

  1. 一个合适大小的位数组保存数据
  2. 几个不同的哈希函数
  3. 添加元素到位数组(布隆过滤器)的方法实现
  4. 判断给定元素是否存在于位数组(布隆过滤器)的方法实现。

下面给出一个我觉得写的还算不错的代码(参考网上已有代码改进得到,对于所有类型对象皆适用):

import java.util.BitSet;public class MyBloomFilter {/*** 位数组的大小*/private static final int DEFAULT_SIZE = 2 << 24;/*** 通过这个数组可以创建 6 个不同的哈希函数*/private static final int[] SEEDS = new int[]{3, 13, 46, 71, 91, 134};/*** 位数组。数组中的元素只能是 0 或者 1*/private BitSet bits = new BitSet(DEFAULT_SIZE);/*** 存放包含 hash 函数的类的数组*/private SimpleHash[] func = new SimpleHash[SEEDS.length];/*** 初始化多个包含 hash 函数的类的数组,每个类中的 hash 函数都不一样*/public MyBloomFilter() {// 初始化多个不同的 Hash 函数for (int i = 0; i < SEEDS.length; i++) {func[i] = new SimpleHash(DEFAULT_SIZE, SEEDS[i]);}}/*** 添加元素到位数组*/public void add(Object value) {for (SimpleHash f : func) {bits.set(f.hash(value), true);}}/*** 判断指定元素是否存在于位数组*/public boolean contains(Object value) {boolean ret = true;for (SimpleHash f : func) {ret = ret && bits.get(f.hash(value));}return ret;}/*** 静态内部类。用于 hash 操作!*/public static class SimpleHash {private int cap;private int seed;public SimpleHash(int cap, int seed) {this.cap = cap;this.seed = seed;}/*** 计算 hash 值*/public int hash(Object value) {int h;return (value == null) ? 0 : Math.abs(seed * (cap - 1) & ((h = value.hashCode()) ^ (h >>> 16)));}}
}

测试:

        String value1 = "https://javaguide.cn/";String value2 = "https://github.com/Snailclimb";MyBloomFilter filter = new MyBloomFilter();System.out.println(filter.contains(value1));System.out.println(filter.contains(value2));filter.add(value1);filter.add(value2);System.out.println(filter.contains(value1));System.out.println(filter.contains(value2));

Output:

false
false
true
true

测试:

        Integer value1 = 13423;Integer value2 = 22131;MyBloomFilter filter = new MyBloomFilter();System.out.println(filter.contains(value1));System.out.println(filter.contains(value2));filter.add(value1);filter.add(value2);System.out.println(filter.contains(value1));System.out.println(filter.contains(value2));

Output:

false
false
true
true

5.利用Google开源的 Guava中自带的布隆过滤器

自己实现的目的主要是为了让自己搞懂布隆过滤器的原理,Guava 中布隆过滤器的实现算是比较权威的,所以实际项目中我们不需要手动实现一个布隆过滤器。

首先我们需要在项目中引入 Guava 的依赖:

        <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>28.0-jre</version></dependency>

实际使用如下:

我们创建了一个最多存放 最多 1500个整数的布隆过滤器,并且我们可以容忍误判的概率为百分之(0.01)

        // 创建布隆过滤器对象BloomFilter<Integer> filter = BloomFilter.create(Funnels.integerFunnel(),1500,0.01);// 判断指定元素是否存在System.out.println(filter.mightContain(1));System.out.println(filter.mightContain(2));// 将元素添加进布隆过滤器filter.put(1);filter.put(2);System.out.println(filter.mightContain(1));System.out.println(filter.mightContain(2));

在我们的示例中,当mightContain() 方法返回true时,我们可以99%确定该元素在过滤器中,当过滤器返回false时,我们可以100%确定该元素不存在于过滤器中。

Guava 提供的布隆过滤器的实现还是很不错的(想要详细了解的可以看一下它的源码实现),但是它有一个重大的缺陷就是只能单机使用(另外,容量扩展也不容易),而现在互联网一般都是分布式的场景。为了解决这个问题,我们就需要用到 Redis 中的布隆过滤器了。

6.Redis 中的布隆过滤器

6.1介绍

Redis v4.0 之后有了 Module(模块/插件) 功能,Redis Modules 让 Redis 可以使用外部模块扩展其功能 。布隆过滤器就是其中的 Module。详情可以查看 Redis 官方对 Redis Modules 的介绍 :https://redis.io/modules

另外,官网推荐了一个 RedisBloom 作为 Redis 布隆过滤器的 Module,地址:https://github.com/RedisBloom/RedisBloom. 其他还有:

  • redis-lua-scaling-bloom-filter (lua 脚本实现):https://github.com/erikdubbelboer/redis-lua-scaling-bloom-filter
  • pyreBloom(Python中的快速Redis 布隆过滤器) :https://github.com/seomoz/pyreBloom

RedisBloom 提供了多种语言的客户端支持,包括:Python、Java、JavaScript 和 PHP。

6.2使用Docker安装

如果我们需要体验 Redis 中的布隆过滤器非常简单,通过 Docker 就可以了!我们直接在 Google 搜索docker redis bloomfilter 然后在排除广告的第一条搜素结果就找到了我们想要的答案(这是我平常解决问题的一种方式,分享一下),具体地址:https://hub.docker.com/r/redislabs/rebloom/ (介绍的很详细 )。

具体操作如下:

➜  ~ docker run -p 6379:6379 --name redis-redisbloom redislabs/rebloom:latest
➜  ~ docker exec -it redis-redisbloom bash
root@21396d02c252:/data# redis-cli
127.0.0.1:6379> 

6.3常用命令一览

注意: key:布隆过滤器的名称,item : 添加的元素。

  1. BF.ADD :将元素添加到布隆过滤器中,如果该过滤器尚不存在,则创建该过滤器。格式:BF.ADD {key} {item}
  2. BF.MADD : 将一个或多个元素添加到“布隆过滤器”中,并创建一个尚不存在的过滤器。该命令的操作方式BF.ADD与之相同,只不过它允许多个输入并返回多个值。格式:BF.MADD {key} {item} [item ...]
  3. **BF.EXISTS ** : 确定元素是否在布隆过滤器中存在。格式:BF.EXISTS {key} {item}
  4. BF.MEXISTS : 确定一个或者多个元素是否在布隆过滤器中存在格式:BF.MEXISTS {key} {item} [item ...]

另外,BF.RESERVE 命令需要单独介绍一下:

这个命令的格式如下:

BF.RESERVE {key} {error_rate} {capacity} [EXPANSION expansion]

下面简单介绍一下每个参数的具体含义:

  1. key:布隆过滤器的名称
  2. error_rate :误报的期望概率。这应该是介于0到1之间的十进制值。例如,对于期望的误报率0.1%(1000中为1),error_rate应该设置为0.001。该数字越接近零,则每个项目的内存消耗越大,并且每个操作的CPU使用率越高。
  3. capacity: 过滤器的容量。当实际存储的元素个数超过这个值之后,性能将开始下降。实际的降级将取决于超出限制的程度。随着过滤器元素数量呈指数增长,性能将线性下降。

可选参数:

  • expansion:如果创建了一个新的子过滤器,则其大小将是当前过滤器的大小乘以expansion。默认扩展值为2。这意味着每个后续子过滤器将是前一个子过滤器的两倍。

6.4实际使用

127.0.0.1:6379> BF.ADD myFilter java
(integer) 1
127.0.0.1:6379> BF.ADD myFilter javaguide
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter java
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter javaguide
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter github
(integer) 0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/106366.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

骨传导耳机对大脑有影响吗?骨传导耳机有什么副作用

先上结论&#xff0c;骨传导耳机对大脑没有影响。骨传导耳机使用的是骨传导技术&#xff0c;声音是通过头骨骨头和颌骨给内耳传递的&#xff0c;而不是通过传统的空气传播。 简单来说&#xff0c;骨传导技术使用人类骨骼结构和声学原理来传递声音&#xff0c;这种现象我们也很常…

最新Burp Suite入门技术

Burp Suite的安装 Burp Suite是一款集成化的渗透测试工具&#xff0c;包含了很多功能&#xff0c;可以帮助我们高效地完成对Web应用程序的渗透测试和安全检测。 Burp Suite由Java语言编写&#xff0c;Java自身的跨平台性使我们能更方便地学习和使用这款软件。不像其他自动化测…

vue3 基础知识 (组件之间的通信 and vuex) 02

侬好哇 &#xff01;&#x1f60d; 文章目录 一、组件的通信 &#xff08;父传子&#xff09;二、非 Prop 的Attribute (属性&#xff09;三、组件的通信 &#xff08;子传父&#xff09;四、非父子组件的相互通信&#xff08;Provide/Inject&#xff09;五、非父子组件的相互通…

顺序表之初

欢迎来到我的&#xff1a;世界 希望作者的文章对你有所帮助&#xff0c;有不足的地方还请指正&#xff0c;大家一起学习交流 ! 目录 线性表简介顺序表定义动态顺序表的初始化尾插头插Cheak 判断是否增容尾删&#xff1a;头删&#xff1a;打印在pos位置前插入x删除pos位置的值查…

Python学习笔记_实战篇(二)_django多条件筛选搜索

多条件搜索在很多网站上都有用到&#xff0c;比如京东&#xff0c;淘宝&#xff0c;51cto&#xff0c;等等好多购物教育网站上都有&#xff0c;当然网上也有很多开源的比楼主写的好的多了去了&#xff0c;仅供参考&#xff0c;哈哈 先来一张效果图吧&#xff0c;不然幻想不出来…

浅谈小程序开源业务架构建设之路

一、业务介绍 1.1 小程序开源整体介绍 百度从做智能小程序的第一天开始就打造真正开源开放的生态&#xff0c;我们的愿景是&#xff1a;定义移动时代最佳体验&#xff0c;建设智能小程序行业标准&#xff0c;打破孤岛&#xff0c;共建开源、开放、繁荣的小程序行业生态。百度智…

电子电路学习笔记之SA1117BH-1.2TR——LDO低压差线性稳压器

关于LDO调节器&#xff08;Low Dropout Regulator&#xff09;是一种电压稳压器件&#xff0c;常用于电子设备中&#xff0c;用于将高电压转换为稳定的低电压。它能够在输入电压和输出电压之间产生较小的差异电压&#xff0c;因此被称为"低压差稳压器"。 LDO调节器通…

设计模式之职责链模式(ChainOfResponsibility)的C++实现

1、职责链模式的提出 在软件开发过程中&#xff0c;发送者经常发送一个数据请求给特定的接收者对象&#xff0c;让其对请求数据进行处理&#xff08;一个数据请求只能有一个对象对其处理&#xff09;。如果发送的每个数据请求指定特定的接收者&#xff0c; 将带来发送者与接收…

【LeetCode】1448.统计二叉树中好节点的数目

题目 给你一棵根为 root 的二叉树&#xff0c;请你返回二叉树中好节点的数目。 「好节点」X 定义为&#xff1a;从根到该节点 X 所经过的节点中&#xff0c;没有任何节点的值大于 X 的值。 示例 1&#xff1a; 输入&#xff1a;root [3,1,4,3,null,1,5] 输出&#xff1a;4 …

【MOS管的作用和工作原理】

数电/模电知识学习与分享001 MOS管的作用和工作原理1、MOS管基本概念2、MOS管基本原理3、MOS管广泛作用4、MOS管特点4、参考文献 MOS管的作用和工作原理 1、MOS管基本概念 MOS管&#xff08;Metal-Oxide-Semiconductor Field-Effect Transistor&#xff09;是一种常用的半导体…

python AI绘图教程

前提 1.安装python 2.安装git 步骤 下载stable-diffusion-webui项目&#xff08;链接&#xff1a;GitHub - AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI&#xff09; git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git 安装st…

【Go Web 篇】Go 语言进行 Web 开发:构建高性能网络应用

随着互联网的快速发展&#xff0c;Web 开发已经成为了软件开发领域中不可或缺的一部分。随之而来的是对于更高性能、更高效的网络应用的需求。在这个领域&#xff0c;Go 语言因其并发性能、简洁的语法以及丰富的标准库而备受关注。本篇博客将深入探讨如何使用 Go 语言进行 Web …

centos7设置静态IP地址

安装完成系统后&#xff0c;接下来就是配置静态IP地址&#xff0c;如下&#xff1a; 进入编辑模式vim /etc/sysconfig/network-scripts/ifcfg-ens33 文件名不一定是ifcfg-ens33&#xff0c;到/etc/sysconfig/network-scripts下面找下是哪个文件 修改 &#xff1a; BOOTPROTO…

Python OCR 使用easyocr库将图片中的文章提取出来

Python OCR 使用easyocr库将图片中的文章提取出来 初环境内容步骤一&#xff1a;安装easyocr库步骤二&#xff1a;导入必要的库步骤三&#xff1a;创建OCR阅读器对象步骤四&#xff1a;指定要识别的图片路径步骤五&#xff1a;执行OCR识别并提取文章内容步骤六&#xff1a;遍历…

深入分析负载均衡情景

本文出现的内核代码来自Linux5.4.28&#xff0c;为了减少篇幅&#xff0c;我们尽量不引用代码&#xff0c;如果有兴趣&#xff0c;读者可以配合代码阅读本文。 一、有几种负载均衡的方式&#xff1f; 整个Linux的负载均衡器有下面的几个类型&#xff1a; 实际上内核的负载均衡…

【TI毫米波雷达笔记】UART串口外设配置及驱动(以IWR6843AOP为例)

【TI毫米波雷达笔记】UART串口外设初始化配置及驱动&#xff08;以IWR6843AOP为例&#xff09; 最基本的工程建立好以后 需要给SOC进行初始化配置 int main (void) {//刷一下内存memset ((void *)L3_RAM_Buf, 0, sizeof(L3_RAM_Buf));int32_t errCode; //存放SOC初…

同态比较算法

参考文献&#xff1a; [PS73] Paterson M S, Stockmeyer L J. On the number of nonscalar multiplications necessary to evaluate polynomials[J]. SIAM Journal on Computing, 1973, 2(1): 60-66.[IZ21] Iliashenko I, Zucca V. Faster homomorphic comparison operations …

redis7高级篇3 数据量亿级别的统计分析(hyperloglog,bitmap,geo)

一 亿级别统计分类 1.1 统计分类 1.聚合统计&#xff1a;统计多个集合聚合的结果&#xff0c;也就是多个集合之间交并差的统计。 2.排序统计&#xff1a;在需要展示最新列表&#xff0c;排行榜等场景时&#xff0c;如果数据更新频繁或者需要分页时&#xff0c;建议使用zset12…

滚珠螺杆导程对精度有影响吗?

滚珠螺杆的导程也称螺距&#xff0c;即螺杆每旋转一周螺母直线运动的距离&#xff0c;导程与直线速度有关&#xff0c;在输入转速一定的情况下&#xff0c;导程越大速度越快。正常来说&#xff0c;选择导程时&#xff0c;尽量选5和10最好。 很多人一直觉得导程会影响滚珠螺杆的…

【安卓】自定义View实现画板涂鸦等功能

一、实现效果 二、代码 1、MainActivity.class package com.lsl.mydrawingboarddemo;import androidx.appcompat.app.AppCompatActivity; import androidx.core.content.ContextCompat;import android.os.Bundle; import android.os.Handler; import android.view.View; impo…