Java锁自定义实现到aqs的理解

专栏系列文章地址:https://blog.csdn.net/qq_26437925/article/details/145290162

本文目标:

  1. 理解锁,能自定义实现锁
  2. 通过自定义锁的实现复习Thread和Object的相关方法
  3. 开始尝试理解Aqs, 这样后续基于Aqs的的各种实现将能更好的理解

目录

    • 锁的自定义实现
      • lock 自旋加锁
      • 改进1: 自旋加锁失败的尝试让出cpu(yield操作)
      • 改进2: yield 换成sleep
      • 改进3: 仿照ObjectMonitor,加上一个等待队列
    • AbstractQueuedSynchronizer
      • Aqs核心思想归纳
      • AbstractQueuedSynchronizer 抽象类的说明和实现
      • 同步器说明
      • Aqs独占模式
      • Aqs共享模式
      • 基于Aqs再次实现自定义锁

锁的自定义实现

线程基础和cas操作知晓后,可以开始自己实现锁了。

例子代码实现多线程的count++

import sun.misc.Unsafe;import java.lang.reflect.Field;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.TimeUnit;class MyLock {volatile int status = 0;Unsafe unsafe;// 引用Unsafe需使用如下反射方式,否则会抛出异常java.lang.SecurityException: Unsafepublic Unsafe reflectGetUnsafe() throws NoSuchFieldException, IllegalAccessException {Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");theUnsafe.setAccessible(true);//禁止访问权限检查(访问私有属性时需要加上)return (Unsafe) theUnsafe.get(null);}boolean compareAndSet(int expect, int newValue) {try {Field field = this.getClass().getDeclaredField("status");field.setAccessible(true);long offset = unsafe.objectFieldOffset(field);//cas操作return unsafe.compareAndSwapInt(status, offset, expect, newValue);} catch (Exception e) {return false;}}public MyLock() {try {unsafe = reflectGetUnsafe();} catch (Exception e) {e.printStackTrace();}}public void lock() {while (!compareAndSet(0, 1)) {}}public void unlock() {compareAndSet(1, 0);}}public class Main {static int count = 0;static int N = 100;public static void main(String[] args) throws Exception {MyLock lock = new MyLock();List<Thread> list = new ArrayList<>();for (int i = 0; i < N; i++) {Thread thread = new Thread(() -> {try {lock.lock();TimeUnit.MILLISECONDS.sleep(1);count++;} catch (Exception e) {} finally {lock.unlock();}}, "myThread-" + i);list.add(thread);}for (Thread thread : list) {thread.start();}for (Thread thread : list) {thread.join();}System.out.println("count:" + count);}
}

lock 自旋加锁

volatile int status = 0;public void lock() {while (!compareAndSet(0, 1)) {}
}

问题:没有竞争得到锁的线程会一直占用CPU资源进行CAS操作,假如一个线程耗费n秒处理业务逻辑,那另外一个线程就会白白花费n秒的CPU资源在那里自旋。

改进1: 自旋加锁失败的尝试让出cpu(yield操作)

所以可以yield尝试让出CPU(可复习:https://blog.csdn.net/qq_26437925/article/details/145400968)

 public void lock() {while (!compareAndSet(0, 1)) {Thread.yield();}
}

问题:yield是将线程设置为就绪状态,需要获取到CPU时间片才能执行变成真正的RUNNABLE状态。但是当线程很多的时候,重新竞争的时候很可能某些线程老是获取不到CPU执行,这样就会出现线程饥饿现象

改进2: yield 换成sleep

public void lock() {while (!compareAndSet(0, 1)) {try {TimeUnit.MILLISECONDS.sleep(100);} catch (Exception e) {}}
}

sleep 也是让出CPU,但是和yield不同,其是把线程设置为TIMED_WAITING状态(A thread that is waiting for another thread to perform an action for up to a specified waiting time is in this state)。不过sleep使用的问题是,不确定sleep多久

改进3: 仿照ObjectMonitor,加上一个等待队列

获取不到的锁的线程,加入到一个等待队列中,释放其CPU; 当有线程要释放锁了,则从头部队列移除线程,开始继续获取锁

import sun.misc.Unsafe;import java.lang.reflect.Field;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.TimeUnit;class MyLock {volatile int status = 0;Unsafe unsafe;Queue<Thread> waitQueue;// 引用Unsafe需使用如下反射方式,否则会抛出异常java.lang.SecurityException: Unsafepublic Unsafe reflectGetUnsafe() throws NoSuchFieldException, IllegalAccessException {Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");theUnsafe.setAccessible(true);//禁止访问权限检查(访问私有属性时需要加上)return (Unsafe) theUnsafe.get(null);}boolean compareAndSet(int expect, int newValue) {try {Field field = this.getClass().getDeclaredField("status");field.setAccessible(true);long offset = unsafe.objectFieldOffset(field);//cas操作return unsafe.compareAndSwapInt(status, offset, expect, newValue);} catch (Exception e) {return false;}}public MyLock() {try {unsafe = reflectGetUnsafe();waitQueue = new ArrayDeque<>();} catch (Exception e) {e.printStackTrace();}}public void lock() {while (!compareAndSet(0, 1)) {park(Thread.currentThread());}}public void unlock() {compareAndSet(1, 0);// 有线程要释放锁了,公平方式,头部线程可以不等待了, 开始去获取锁// 1.得到要唤醒的线程头部线程Thread t = waitQueue.poll();// 2. 唤醒等待线程if (t != null) {unsafe.unpark(t);}}private void park(Thread thread) {if (waitQueue.contains(thread)) {return;}// 将线程加入到等待队列中waitQueue.add(thread);// 将当期线程释放CPU 阻塞thread.yield();}
}public class Main {static int count = 0;static int N = 100;public static void main(String[] args) throws Exception {MyLock lock = new MyLock();List<Thread> list = new ArrayList<>();for (int i = 0; i < N; i++) {Thread thread = new Thread(() -> {try {lock.lock();TimeUnit.MILLISECONDS.sleep(1);count++;} catch (Exception e) {} finally {lock.unlock();}}, "myThread-" + i);list.add(thread);}for (Thread thread : list) {thread.start();}for (Thread thread : list) {thread.join();}System.out.println("count:" + count);}
}

AbstractQueuedSynchronizer

如上上述自定义锁实现能够理解,那么就是理解aqs了

  • 锁的实现框架

参考:美团技术文章:从ReentrantLock的实现看AQS的原理及应用

参考:《The java.util.concurrent Synchronizer Framework》 JUC同步器框架(AQS框架)原文翻译

论文地址

docs api

Provides a framework for implementing blocking locks and related synchronizers (semaphores, events, etc) that rely on first-in-first-out (FIFO) wait queues. This class is designed to be a useful basis for most kinds of synchronizers that rely on a single atomic int value to represent state. Subclasses must define the protected methods that change this state, and which define what that state means in terms of this object being acquired or released. Given these, the other methods in this class carry out all queuing and blocking mechanics. Subclasses can maintain other state fields, but only the atomically updated int value manipulated using methods getState(), setState(int) and compareAndSetState(int, int) is tracked with respect to synchronization.

Aqs核心思想归纳

AQS核心思想是:如果被请求的共享资源空闲,那么就将当前请求资源的线程设置为有效的工作线程,将共享资源设置为锁定状态;如果共享资源被占用,就需要一定的阻塞等待唤醒机制来保证锁分配。这个机制主要用的是CLH队列的变体实现的,将暂时获取不到锁的线程加入到队列中

CLH:Craig、Landin and Hagersten队列,链表结构,AQS中的队列是CLH变体的虚拟双向队列(FIFO),AQS是通过将每条请求共享资源的线程封装成一个节点来实现锁的分配。

在这里插入图片描述

在这里插入图片描述

AQS使用一个volatile的int类型的成员变量state来表示同步状态,通过内置的FIFO队列来完成资源获取的排队工作,通过CAS完成对state值的修改。

AbstractQueuedSynchronizer 抽象类的说明和实现

  1. AbstractQueuedSynchronizer 提供了一个框架,用来实现blocking locks 和 一些同步器,且是基于一个FIFO队列的
  2. AbstractQueuedSynchronizer 被设计为使用一个single atomic {@code int} value来表示状态
  3. AbstractQueuedSynchronizer的子类必须去定义状态,并提供protected方法去操作状态:getState、setState以及compareAndSet
  4. 基于AQS的具体实现类必须根据暴露出的状态相关的方法定义tryAcquiretryRelease方法,以控制acquire和release操作。当同步状态满足时,tryAcquire方法必须返回true,而当新的同步状态允许后续acquire时,tryRelease方法也必须返回true。这些方法都接受一个int类型的参数用于传递想要的状态。

同步器说明

两个操作

  1. acquire操作:阻塞调用的线程,直到或除非同步状态允许其继续执行。
  2. release操作:则是通过某种方式改变同步状态,使得一或多个被acquire阻塞的线程继续执行。

同步器需要支持如下:

  • 阻塞和非阻塞(例如tryLock)的同步
  • 可选的超时设置,让调用者可以放弃等待
  • 通过中断实现的任务取消,通常是分为两个版本,一个acquire可取消,而另一个不可以

同步器的实现根据其状态是否独占而有所不同。独占状态的同步器,在同一时间只有一个线程可以通过阻塞点,而共享状态的同步器可以同时有多个线程在执行。一般锁的实现类往往只维护独占状态,但是,例如计数信号量在数量许可的情况下,允许多个线程同时执行。为了使框架能得到广泛应用,这两种模式都要支持。

j.u.c包里还定义了Condition接口,用于支持监控形式的await/signal操作,这些操作与独占模式的Lock类有关,且Condition的实现天生就和与其关联的Lock类紧密相关

Aqs独占模式

在这里插入图片描述

Aqs共享模式

在这里插入图片描述

基于Aqs再次实现自定义锁

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;class MyLock  {private static class Sync extends AbstractQueuedSynchronizer {// 加锁的cas操作@Overrideprotected boolean tryAcquire (int arg) {return compareAndSetState(0, 1);}@Overrideprotected boolean tryRelease (int arg) {setState(0);return true;}@Overrideprotected boolean isHeldExclusively () {return getState() == 1;}}private Sync sync = new Sync();public void lock () {sync.acquire(1);}public void unlock () {sync.release(1);}
}public class Main {static int count = 0;static int N = 100;public static void main(String[] args) throws Exception {MyLock lock = new MyLock();List<Thread> list = new ArrayList<>();for (int i = 0; i < N; i++) {Thread thread = new Thread(() -> {try {lock.lock();TimeUnit.MILLISECONDS.sleep(1);count++;} catch (Exception e) {} finally {lock.unlock();}}, "myThread-" + i);list.add(thread);}for (Thread thread : list) {thread.start();}for (Thread thread : list) {thread.join();}System.out.println("count:" + count);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10668.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于STM32的阿里云智能农业大棚

目录 前言&#xff1a; 项目效果演示&#xff1a; 一、简介 二、硬件需求准备 三、硬件框图 四、CubeMX配置 4.1、按键、蜂鸣器GPIO口配置 4.2、ADC输入配置 4.3、IIC——驱动OLED 4.4、DHT11温湿度读取 4.5、PWM配置——光照灯、水泵、风扇 4.6、串口——esp8266模…

【游戏设计原理】96 - 成就感

成就感是玩家体验的核心&#xff0c;它来自完成一件让自己满意的任务&#xff0c;而这种任务通常需要一定的努力和挑战。游戏设计师的目标是通过合理设计任务&#xff0c;不断为玩家提供成就感&#xff0c;保持他们的参与热情。 ARCS行为模式&#xff08;注意力、关联性、自信…

MySQL CTE:解锁SQL查询新模式

目录 一、CTE 初相识 二、CTE 基础语法 &#xff08;一&#xff09;基本语法结构 &#xff08;二&#xff09;语法规则详解 三、非递归 CTE 应用实例 &#xff08;一&#xff09;单 CTE 简单查询 &#xff08;二&#xff09;多 CTE 联合查询 四、递归 CTE 深入探索 &…

C#,入门教程(12)——数组及数组使用的基础知识

上一篇&#xff1a; C#&#xff0c;入门教程(11)——枚举&#xff08;Enum&#xff09;的基础知识和高级应用https://blog.csdn.net/beijinghorn/article/details/123917587https://blog.csdn.net/beijinghorn/article/details/123917587 数组是一种数据集合&#xff0c;是一组…

【leetcode练习·二叉树】计算完全二叉树的节点数

本文参考labuladong算法笔记[拓展&#xff1a;如何计算完全二叉树的节点数 | labuladong 的算法笔记] 如果让你数一下一棵普通二叉树有多少个节点&#xff0c;这很简单&#xff0c;只要在二叉树的遍历框架上加一点代码就行了。 但是&#xff0c;力扣第第 222 题「完全二叉树的…

低代码系统-产品架构案例介绍、轻流(九)

轻流低代码产品定位为零代码产品&#xff0c;试图通过搭建来降低企业成本&#xff0c;提升业务上线效率。 依旧是从下至上&#xff0c;从左至右的顺序 名词概述运维层底层系统运维层&#xff0c;例如上线、部署等基础服务体系内置的系统能力&#xff0c;发消息、组织和权限是必…

对顾客行为的数据分析:融入2+1链动模式、AI智能名片与S2B2C商城小程序的新视角

摘要&#xff1a;随着互联网技术的飞速发展&#xff0c;企业与顾客之间的交互方式变得日益多样化&#xff0c;移动设备、社交媒体、门店、电子商务网站等交互点应运而生。这些交互点不仅为顾客提供了便捷的服务体验&#xff0c;同时也为企业积累了大量的顾客行为数据。本文旨在…

MSA Transformer

过去的蛋白质语言模型以单个序列为输入&#xff0c;MSA Transformer以多序列比对的形式将一组序列作为输入。该模型将行和列注意力交织在输入序列中&#xff0c;并在许多蛋白质家族中使用mask语言建模目标进行训练。模型的性能远超过了当时最先进的无监督学习方法&#xff0c;其…

QT实现有限元软件操作界面

本系列文章致力于实现“手搓有限元&#xff0c;干翻Ansys的目标”&#xff0c;基本框架为前端显示使用QT实现交互&#xff0c;后端计算采用Visual Studio C。 本篇将二维矩形截面梁单元&#xff08;Rect_Beam2D2Node&#xff09;组成的钢结构桥作为案例来展示软件功能。 也可以…

推荐一款好用的翻译类浏览器扩展插件

给大家推荐一款实用的翻译工具——沉浸式翻译。这是一款免费、高效的AI驱动浏览器扩展插件&#xff0c;能够帮助用户轻松打破语言障碍&#xff0c;享受沉浸式的阅读体验。 主要特性 沉浸式阅读体验&#xff1a;通过智能识别网页主内容区域并进行双语对照翻译&#xff0c;让用户…

ElasticSearch-文档元数据乐观并发控制

文章目录 什么是文档&#xff1f;文档元数据文档的部分更新Update 乐观并发控制 最近日常工作开发过程中使用到了 ES&#xff0c;最近在检索资料的时候翻阅到了 ES 的官方文档&#xff0c;里面对 ES 的基础与案例进行了通俗易懂的解释&#xff0c;读下来也有不少收获&#xff0…

开源的瓷砖式图像板系统Pinry

简介 什么是 Pinry &#xff1f; Pinry 是一个开源的瓷砖式图像板系统&#xff0c;旨在帮助用户轻松保存、标记和分享图像、视频和网页。它提供了一种便于快速浏览的格式&#xff0c;适合喜欢整理和分享多种媒体内容的人。 主要特点 图像抓取和在线预览&#xff1a;支持从网页…

Java 大视界 -- Java 大数据在自动驾驶中的数据处理与决策支持(68)

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…

【数据结构】初识链表

顺序表的优缺点 缺点&#xff1a; 中间/头部的插入删除&#xff0c;时间复杂度效率较低&#xff0c;为O(N) 空间不够的时候需要扩容。 如果是异地扩容&#xff0c;增容需要申请新空间&#xff0c;拷贝数据&#xff0c;释放旧空间&#xff0c;会有不小的消耗。 扩容可能会存在…

I.MX6ULL 中断介绍上

i.MX6ULL是NXP&#xff08;原Freescale&#xff09;推出的一款基于ARM Cortex-A7内核的微处理器&#xff0c;广泛应用于嵌入式系统。在i.MX6ULL中&#xff0c;中断&#xff08;Interrupt&#xff09;是一种重要的机制&#xff0c;用于处理外部或内部事件&#xff0c;允许微处理…

4-图像梯度计算

文章目录 4.图像梯度计算(1)Sobel算子(2)梯度计算方法(3)Scharr与Laplacian算子4.图像梯度计算 (1)Sobel算子 图像梯度-Sobel算子 Sobel算子是一种经典的图像边缘检测算子,广泛应用于图像处理和计算机视觉领域。以下是关于Sobel算子的详细介绍: 基本原理 Sobel算子…

苍穹外卖——数据统计

在商家管理端的左侧&#xff0c;有一个名为"数据统计"的菜单&#xff0c;该页面负责展示各个维度的数据统计&#xff0c;分别是营业额统计、用户统计、订单统计、销量排名top10。统计的数据是借助一些图形化的报表技术来生成并展示的。在左上角还可选择时间段&#x…

优盘恢复原始容量工具

买到一个优盘&#xff0c;显示32mb&#xff0c;我见过扩容盘&#xff0c;但是这次见到的是缩容盘&#xff0c;把2g的容量缩成32MB了&#xff0c;首次见到。。用芯片查询工具显示如下 ChipsBank(芯邦) CBM2199E 使用以下工具&#xff0c;恢复原始容量。。 其他CMB工具可能不行…

Flutter Candies 一桶天下

| | | | | | | | 入魔的冬瓜 最近刚入桶的兄弟&#xff0c;有责任心的开发者&#xff0c;对自己的项目会不断进行优化&#xff0c;达到最完美的状态 自定义日历组件 主要功能 支持公历&#xff0c;农历&#xff0c;节气&#xff0c;传统节日&#xff0c;常用节假日 …

[Collection与数据结构] B树与B+树

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏: &#x1f9ca; Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 &#x1f355; Collection与…