机器学习实战之模型的解释性:Scikit-Learn的SHAP和LIME库


概要

机器学习模型的“黑箱”困境

机器学习模型的崛起让我们惊叹不已!不论是预测房价、识别图片中的猫狗,还是推荐给你喜欢的音乐,这些模型都表现得非常出色。但是,有没有想过,这些模型到底是如何做出这些决策的呢?

作为一名Python爱好者,我们自然希望能够了解模型背后的原理。好消息是,SHAPLIME这两个库能帮助我们!它们可以帮助我们揭示模型的内部结构,让我们能够更好地理解和优化模型。


一:SHAP值到底是什么?

SHAP(SHapley Additive exPlanations)是一种解释机器学习模型的方法,它基于博弈论中的Shapley值。Shapley值的核心思想是给每个特征分配一个贡献值,用以表示该特征对预测结果的影响程度。

1.1 SHAP值的计算方法

首先,我们需要安装shap库:

!pip install shap

假设我们已经用Scikit-Learn训练好了一个模型model。为了计算SHAP值,我们需要先初始化一个KernelExplainer对象:

import shapexplainer = shap.KernelExplainer(model.predict, X_train)

然后就可以用shap_values方法计算每个特征的SHAP值了:

shap_values = explainer.shap_values(X_test)

这样,我们就得到了每个特征对每个预测样本的贡献值。

1.2 用SHAP值分析模型

SHAP库提供了一些可视化方法,帮助我们更直观地分析模型。例如,我们可以用summary_plot方法来绘制SHAP值的总体情况:

shap.summary_plot(shap_values, X_test)

这张图展示了每个特征的SHAP值随着特征值的变化。从图中我们可以看出,不同特征对预测结果的影响程度有很大差异。

二:LIME如何揭示模型局部特性?

LIME(Local Interpretable Model-Agnostic Explanations)则是另一种解释机器学习模型的方法。它的主要思想是在每个预测样本周围建立一个简单的线性模型,从而帮助我们理解模型在局部的行为。

2.1 使用LIME分析模型

首先,我们需要安装lime库:

!pip install lime

假设我们已经用Scikit-Learn训练好了一个模型model。为了使用LIME,我们需要先创建一个LimeTabularExplainer对象:

from lime.lime_tabular import LimeTabularExplainerexplainer = LimeTabularExplainer(X_train.values, feature_names=X_train.columns, class_names=['prediction'], verbose=True)

然后我们可以为某个预测样本生成LIME解释:

i = 42  # 随便选一个样本
exp = explainer.explain_instance(X_test.values[i], model.predict_proba)

最后,我们可以用show_in_notebook方法将LIME解释可视化:

exp.show_in_notebook()

这样我们就可以看到一个简单的线性模型,展示了各个特征对预测结果的贡献。

2.2 LIME的局限性

虽然LIME能够帮助我们理解模型在局部的行为,但它也有一些局限性。例如,LIME依赖于一个简单的线性模型,可能无法很好地捕捉到复杂模型的特性。

三:SHAP与LIME的比较

既然我们已经了解了SHAP和LIME这两个库,那么自然会产生一个疑问:它们之间有什么区别,该如何选择呢?

3.1 二者的异同

首先总结一下它们的相似之处:

  1. 都能帮助我们解释机器学习模型;

  2. 都可以为每个特征分配一个贡献值;

  3. 都支持Scikit-Learn中的模型。

不同之处:

  1. SHAP基于Shapley值,具有一定的理论基础;

  2. LIME关注局部特性,用简单模型解释复杂模型;

  3. SHAP可以捕捉到特征间的相互作用,而LIME不行。

3.2 如何选择?

虽然SHAP和LIME都有各自的优缺点,但总体来说,SHAP更具有理论基础,而且能捕捉到特征间的相互作用。因此,在大多数情况下,我们推荐使用SHAP库。但如果您对局部特性更感兴趣,那么LIME也是一个不错的选择。

技术总结

通过这些方法,我们可以更好地理解模型的内部结构,进而优化模型,提高预测准确率。最后,欢迎在评论区留言分享你的见解,告诉我们你是如何运用这些知识解决实际问题的!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/108010.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用rook搭建Ceph集群

宿主机: MacBook Pro(Apple M2 Max) VMware Fusion Player 版本 13.0.2 VM软硬件: ubuntu 22.04.2 4核 CPU,5G 内存,40G硬盘 *每台机器分配硬件资源很重要,可以适当超过宿主机的资源量&am…

算法通关村——解析堆在数组和链表的应用

1. 堆 1.1 什么是堆? 堆是将一组数据以完全二叉树的形式存储在数组里面。一般有大根堆和小根堆。 小根堆:任意节点的值小于等于它的左右孩子,最小值在堆顶。 大根堆:任意节点的值大于等于它的左右还是,最大值在堆顶。…

基于Android的垃圾分类系统 微信小程序 uniapp

随着网络科技的发展,移动智能终端逐渐走进人们的视线,相关应用越来越广泛,并在人们的日常生活中扮演着越来越重要的角色。因此,关键应用程序的开发成为影响移动智能终端普及的重要因素,设计并开发实用、方便的应用程序…

Redis之stream类型解读

目录 基本介绍 数据结构 消息 消费组 消费者 基本使用命令 概述 xadd 命令 xtrim 命令 xdel 命令 xlen 命令 xrange 命令 xread 命令 xgroup 命令 xreadgroup 命令 xack 命令 基本介绍 Redis stream(流)是一种数据结构,其…

【TA 挖坑03】雾效 | 透光材质 | Impostor | 厚度转球谐

仍旧是记录下半年想要做的东西,很有趣,实现“一团雾效” “面片也有立体感” 等等效果的一些技术上的方法。 仅粗浅记录,保证之后自己填坑的时候看得懂就行! 透光 -> 透光材质ShadingModel 《永劫无间》透光材质的渲染&…

PHP自己的框架cookie()使用(完善篇七)

1、PHP自己的框架cookie() 2、cookie类&#xff08;CookieBase.php&#xff09; <?php class CookieBase {/*** 设置cookie*/public static function set($name, $value, $expire 3600, $path , $domain , $secure false, $httponly false) {setcookie($name, $valu…

几个nlp的小任务(抽取式问答)

几个nlp的小任务(抽取式问答) 安装库抽取式问答介绍、SQuAD数据集初始化参数加载、导入数据集查看数据集示例加载tokenizer对长文本处理的演示对答案的位置进行验证整合刚才的步骤对数据集中的数据进行预处理加载微调模型设置args 参数使用数据清洗设置训练函数,开始训练安装…

人员着装识别算法 yolo

人员着装识别系统通过yolo网络模型识别算法&#xff0c;人员着装识别系统算法通过现场安装的摄像头识别工厂人员及工地人员是否按要求穿戴着装&#xff0c;实时监测人员的着装情况&#xff0c;并进行相关预警。目标检测架构分为两种&#xff0c;一种是two-stage&#xff0c;一种…

一段简单的汇编语言源程序【2】

此文章主要记录代码的编写&#xff0c;编译&#xff0c;连接&#xff0c;调试过程&#xff0c;相关工具的安装和使用介绍在前面的文章中已提供。 主要功能通过栈实现两个数的交换 源代码如下&#xff1a; assume cs:codesg codesg segmentmov ax,2000Hmov ss,axmov sp,0add s…

Qt 自定义菜单 托盘菜单

托盘菜单实现&#xff1a;通过QSystemTrayIconQMenuQAction即可完美实现&#xff01; 实现方式&#xff1a;createActions用于创建菜单、菜单项,translateActions用于设置文本、实现多语化&#xff0c;translateAccount用于设置用户空间配额。 void TrayMenu::createActions(…

ppt如何转pdf文档?用这个方法可将ppt转pdf

在现代社会中&#xff0c;PPT(幻灯片)已成为一种常见的演示工具&#xff0c;被广泛应用于学术、商务、培训等领域。然而&#xff0c;PPT文件的使用和分享存在一些问题&#xff0c;例如文件格式不兼容、内容修改易被篡改等。为了解决这些问题&#xff0c;将PPT转换为PDF格式已成…

一篇掌握BFD技术(三):单臂回声配置

1. 实验目的 熟悉单臂回声的应用场景掌握单臂回声的配置方法 2. 实验拓扑 想要华为数通配套实验拓扑和配置笔记的朋友们点赞关注&#xff0c;评论区留下邮箱发给你 3. 实验步骤 1&#xff09;配置IP地址 AR1的配置 <Huawei>system-v…

React Hooks 全解:零基础入门

Hooks 的由来 你还在为该使用无状态组件&#xff08;Function&#xff09;还是有状态组件&#xff08;Class&#xff09;而烦恼吗&#xff1f; ——拥有了hooks&#xff0c;你再也不需要写Class了&#xff0c;你的所有组件都将是Function。 你还在为搞不清使用哪个生命周期钩…

Redis(缓存预热,缓存雪崩,缓存击穿,缓存穿透)

目录 一、缓存预热 二、缓存雪崩 三、缓存击穿 四、缓存穿透 一、缓存预热 开过车的都知道&#xff0c;冬天的时候启动我们的小汽车之后不要直接驾驶&#xff0c;先让车子发动机预热一段时间再启动。缓存预热是一样的道理。 缓存预热就是系统启动前&#xff0c;提前将相关的…

GitRedisNginx合集

目录 文件传下载 Git常用命令 Git工作区中文件的状态 远程仓库操作 分支操作 标签操作 idea中使用git 设置git.exe路径 操作步骤 linux配置jdk 安装tomcat 查看是否启动成功 查看tomcat进程 防火墙操作 开放指定端口并立即生效 安装mysql 修改mysql密码 安装lrzsz软…

【AI模型】gym强化学习仿真平台配置与使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍gym强化学习仿真平台配置与使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&…

202325读书笔记|《花间集评注》——金盏不辞须满酌,海棠花下思朦胧,醉香风。满身香雾簇朝霞。世间屏障,彩笔画娇娆。

202325读书笔记|《花间集评注》——金盏不辞须满酌&#xff0c;海棠花下思朦胧&#xff0c;醉香风。满身香雾簇朝霞。世间屏障&#xff0c;彩笔画娇娆。 花间集评注卷一花间集评注卷二花间集评注卷三花间集评注卷四花间集评注卷五花间集评注卷六花间集评注卷七花间集评注卷八花…

代码随想录第32天|122.买卖股票的最佳时机 II,55. 跳跃游戏 ,45. 跳跃游戏 II

122.买卖股票的最佳时机 II 122. 买卖股票的最佳时机 II 思路比较简单 class Solution {public int maxProfit(int[] prices) {int res0,sum0;for(int i0;i<prices.length-1;i){if(prices[i1]-prices[i]>0){sumprices[i1]-prices[i];}ressum>res?sum:res;}return …

Spring 容器启动耗时统计

为了了解 Spring 为什么会启动那么久&#xff0c;于是看了看怎么统计一下加载 Bean 的耗时。 极简版 几行代码搞定。 import org.springframework.beans.BeansException; import org.springframework.beans.factory.config.BeanPostProcessor;import java.util.HashMap; imp…

语言基础篇1——Python概述,Python是什么?Python能干什么?

概述 简介 Python&#xff0c;计算机高级语言&#xff0c;读作/ˈpaɪθən/&#xff08;英音&#xff09;、/ˈpaɪθɑːn/&#xff08;美音&#xff09;&#xff0c;意为蟒蛇&#xff0c;Python的logo为两条缠绕的蟒蛇 特点 Python以开发效率高而运行效率低著称 应用领域…