CNN 02(CNN原理)

一、卷积神经网络(CNN)原理

1.1 卷积神经网络的组成

  • 定义
    • 卷积神经网络由一个或多个卷积层、池化层以及全连接层等组成。与其他深度学习结构相比,卷积神经网络在图像等方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他浅层或深度神经网络,卷积神经网络需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。

我们来看一下卷积网络的整体结构什么样子。

img

1、32*32图片做一次卷积 变成 6 张图(分别用6个7*7的卷积核同时操作)

2、subsampling   池化,将图片缩小到原图片的一半

3、再次卷积,变成16张图片

4、subsampling   池化,将图片缩小到图片的一半

5、全连接

 其中包含了几个主要结构

  • 卷积层(Convolutions)
  • 池化层(Subsampling)
  • 全连接层(Full connection)
  • 激活函数

1.1.1 卷积层

目的

卷积运算的目的是提取输入的不同特征,某些卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网路能从低级特征中迭代提取更复杂的特征。

 参数 

size:卷积核/过滤器大小,选择有1 *1, 3* 3, 5 * 5(全是奇数)

padding:零填充,Valid 与Same

stride: 卷积核移动的步长,通常默认为1

计算公式 

.png

卷积运算过程

对于之前介绍的卷积运算过程,我们用一张动图来表示更好理解些。一下计算中,假设图片长宽相等,设为N

  • 一个步长,3 X 3 卷积核运算

假设是一张5 X 5 的单通道图片,通过使用3 X 3 大小的卷积核运算得到一个 3 X 3大小的运算结果(图片像素数值仅供参考)

img

我们会发现进行卷积之后的图片变小了,假设N为图片大小,F为卷积核大小

相当于N−F+1=5−3+1=3

如果我们换一个卷积核大小或者加入很多层卷积之后,图像可能最后就变成了1 X 1 大小,这不是我们希望看到的结果。并且对于原始图片当中的边缘像素来说,只计算了一遍,对于中间的像素会有很多次过滤器与之计算,这样导致对边缘信息的丢失

 

缺点 

  • 图像变小
  • 边缘信息丢失

 

针对缺点,解决办法:零填充

padding-零填充

零填充:在图片像素的最外层加上若干层0值,若一层,记做p =1。

  • 为什么增加的是0?

因为0在权重乘积和运算中对最终结果不造成影响,也就避免了图片增加了额外的干扰信息。

img

这张图中,还是移动一个像素,并且外面增加了一层0。那么最终计算结果我们可以这样用公式来计算:

  5 + 2 * p - 3 + 1 = 5

  P为1,那么最终特征结果为5。实际上我们可以填充更多的像素,假设为2层,则

  5 + 2 * 2 - 3 + 1 = 7,这样得到的观察特征大小比之前图片大小还大。所以我们对于零填充会有一些选择,该填充多少?
 

Valid and Same卷积

  有两种形式,所以为了避免上述情况,大家选择都是Same这种填充卷积计算方式

  - Valid :不填充,也就是最终大小为
    - $(N - F + 1) * (N - F + 1)$
  - Same:输出大小与原图大小一致,那么 $N$变成了$N + 2P$
    - $(N + 2P - F + 1) * (N + 2P - F + 1)$

  那也就意味着,之前大小与之后的大小一样,得出下面的等式

(N + 2P - F + 1) = N

P=(F-1)/2


  所以当知道了卷积核的大小之后,就可以得出要填充多少层像素。

奇数维度的过滤器

通过上面的式子,如果F不是奇数而是偶数个,那么最终计算结果不是一个整数,造成0.5,1.5…这种情况,这样填充不均匀,所以也就是为什么卷积核默认都去使用奇数维度大小

  • 1 *1,3* 3, 5 *5,7* 7
  • 另一个解释角度
    • 奇数维度的过滤器有中心,便于指出过滤器的位置

当然这个都是一些假设的原因,最终原因还是在F对于计算结果的影响。所以通常选择奇数维度的过滤器,是大家约定成俗的结果,可能也是基于大量实验奇数能得出更好的结果。

stride-步长

以上例子中我们看到的都是每次移动一个像素步长的结果,如果将这个步长修改为2,3,那结果如何?

img

这样如果以原来的计算公式,那么结果

  N + 2P - F + 1 = 6 + 0 -3 +1 = 4

  但是移动2个像素才得出一个结果,所以公式变为

 (N+2P-F)/2 + 1 = 1.5 + 1 = 2.5,如果相除不是整数的时候,向下取整,为2。这里并没有加上零填充。

  所以最终的公式就为:

  对于输入图片大小为N,过滤器大小为F,步长为S,零填充为P,

多通道卷积

当输入有多个通道(channel)时(例如图片可以有 RGB 三个通道),卷积核需要拥有相同的channel数,每个卷积核 channel 与输入层的对应 channel 进行卷积,将每个 channel 的卷积结果按位相加得到最终的 Feature Map。

img

多卷积核

当有多个卷积核时,可以学习到多种不同的特征,对应产生包含多个 channel 的 Feature Map, 例如上图有两个 filter,所以 output 有两个 channel。这里的多少个卷积核也可理解为多少个神经元。

img

相当于我们把多个功能的卷积核的计算结果放在一起,比如水平边缘检测和垂直边缘检测器。

卷积总结

我们来通过一个例子看一下结算结果,以及参数的计算

  • 假设我们有10 个Filter,每个Filter3 X 3 X 3(计算RGB图片),并且只有一层卷积,那么参数有多少?

计算:每个Filter参数个数为:3∗3∗3+1bias=28个权重参数,总共28 * 10 = 280个参数,即使图片任意大小,我们这层的参数也就这么多。

  • 假设一张200 *200* 3的图片,进行刚才的Filter,步长为1,最终为了保证最后输出的大小为200 * 200,需要设置多大的零填充

设计单个卷积Filter的计算公式

假设神经网络某层l的输入:

 所以通用的表示每一层:

池化层(Pooling)

池化层主要对卷积层学习到的特征图进行亚采样(subsampling)处理,主要由两种

  • 最大池化:Max Pooling,取窗口内的最大值作为输出
  • 平均池化:Avg Pooling,取窗口内的所有值的均值作为输出

意义在于:

  • 降低了后续网络层的输入维度,缩减模型大小,提高计算速度
  • 提高了Feature Map 的鲁棒性,防止过拟合

img

对于一个输入的图片,我们使用一个区域大小为2 *2,步长为2的参数进行求最大值操作。同样池化也有一组参数,f, s,得到2* 2的大小。当然如果我们调整这个超参数,比如说3 * 3,那么结果就不一样了,通常选择默认都是f = 2 * 2, s = 2

池化超参数特点:不需要进行学习,不像卷积通过梯度下降进行更新。

如果是平均池化则:

img

全连接层

卷积层+激活层+池化层可以看成是CNN的特征学习/特征提取层,而学习到的特征(Feature Map)最终应用于模型任务(分类、回归):

  • 先对所有 Feature Map 进行扁平化(flatten, 即 reshape 成 1 x N 向量)
  • 再接一个或多个全连接层,进行模型学习

img

 
  -
    - 卷积过滤器个数
    - 卷积过滤器大小
    - 卷积过滤器步数
    - 卷积过滤器零填充
  - 掌握池化的计算过程原理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/108335.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LLM-chatgpt训练过程

流程简介 主要包含模型预训练和指令微调两个阶段 模型预训练&#xff1a;搜集海量的文本数据&#xff0c;无监督的训练自回归decoder&#xff1b; O T P ( O t < T ) O_TP(O_{t<T}) OT​P(Ot<T​)&#xff0c;损失函数CE loss指令微调&#xff1a;在输入文本中加入…

在ubuntu上部署label-studio

1. 安装label-studio 由于服务器的默认python3版本太低&#xff0c;尝试了很多方法&#xff0c;没有升级。因此采用annaconda方式安装label-studio. a.安装anaconda: 参照如下链接&#xff0c;安装anaconda。 Ubuntu安装Anaconda详细步骤&#xff08;Ubuntu22.04.1&#xff…

Hyperf 如何做到用两个端口 9501/9502 都能连接 Websocket 服务以及多 Worker 协作实现聊天室功能

为何 Hyperf 能够在两个端口上监听 WebSocket 连接&#xff1f; 源码角度来看&#xff0c;在配置了多个 Servers 时&#xff0c;实际上&#xff0c;只启动了一个 Server 注&#xff1a;我之前接触的代码都是启动一个服务绑定一个端口&#xff0c;之前也看过 swoole 扩展的文档…

【el-tree】树形组件图标的自定义

饿了么树形组件的图标自定义 默认样式: 可以看到el-tree组件左侧自带展开与收起图标,咱们可以把它隐藏:: .groupList {::v-deep .el-tree-node { .el-icon-caret-right {display: none;} } } 我的全部代码 <div class"groupList"><el…

[NLP]深入理解 Megatron-LM

一. 导读 NVIDIA Megatron-LM 是一个基于 PyTorch 的分布式训练框架&#xff0c;用来训练基于Transformer的大型语言模型。Megatron-LM 综合应用了数据并行&#xff08;Data Parallelism&#xff09;&#xff0c;张量并行&#xff08;Tensor Parallelism&#xff09;和流水线并…

DML语句的用法(MySQL)

文章目录 前言一、DML介绍二、DML语句操作1、给指定字段添加数据2、给全部字段添加数据3、批量添加数据4、修改数据5、删除数据 总结 前言 本文主要介绍SQL语句中DML语句的用法。 在实验开始之前我们先创建一下所要使用表&#xff0c;如下图所示&#xff1a; 一、DML介绍 DM…

matlab使用教程(22)—非线性优化函数的设置

1.设置优化选项 可以使用由 optimset 函数创建的 options 结构体来指定优化参数。然后&#xff0c;可以将 options 作为输入传递给优化函数&#xff0c;例如&#xff0c;通过使用以下语法调用 fminbnd x fminbnd(fun,x1,x2,options) 或使用以下语法调用 fminsearch x f…

单片机IO模拟串口协议

一、前言 嵌入式硬件平台调试中常用的debug方法是看串口打印定位问题&#xff0c;但有时候会遇到单片机没有串口外设或者串口引脚被占用的情况&#xff0c;这时候也可以在代码里操作空闲的IO输出不同个数的脉冲来达到调试的效果&#xff0c;但是要用逻辑分析仪抓线逐个看波形比…

js深拷贝三种方法

使用递归函数实现深拷贝 const obj {name: zzz,age: 18,hobby: [篮球, 足球],family: {baby: baby}} // 深拷贝 数组 对象 一定要先筛数组再筛对象,因为万物皆对象function deepcopy(newObj, oldObj) {for (const k in oldObj) {// 判断值是否属于array类if (oldObj[k] i…

01-jupyter notebook的使用方法

一、Tab补全 在shell中输入表达式&#xff0c;按下Tab&#xff0c;会搜索已输入变量&#xff08;对象、函数等等&#xff09;的命名空间&#xff1a; 除了补全命名、对象和模块属性&#xff0c;Tab还可以补全其它的。当输入看似文件路径时 &#xff08;即使是Python字符串&…

云计算服务体系-架构真题(十四)

云计算服务体系结构SaaS、PaaS、IaaS相对应分别&#xff08;&#xff09;。 答案。应用层、平台层、基础设施层 (2022)给定关系模式R(U,F)&#xff0c;其中U为属性集&#xff0c;F是U的一组函数依赖&#xff0c;那么函数依赖的公理系统(Armstrong)中分解规则是指&#xff08;&…

JavaSE学习——异常

目录 一、异常概述 二、异常的体系结果 二、异常的处理&#xff1a;抓抛模型 三、try-catch-finally的使用 四、throws 异常类型 的使用 五、开发中如何选择使用try-catch-finally还是使用throws&#xff1f; 六、自定义异常 自定义异常步骤&#xff1a; 七、总结&a…

VR/AR/眼镜投屏充电方案(LDR6020)

VR眼镜即VR头显&#xff0c;也称虚拟现实头戴式显示设备&#xff0c;随着元宇宙概念的传播&#xff0c;VR眼镜的热度一直只增不减&#xff0c;但是头戴设备的续航一直被人诟病&#xff0c;如果增大电池就会让头显变得笨重影响体验&#xff0c;所以目前最佳的解决方案还是使用VR…

实时同步ES技术选型:Mysql+Canal+Adapter+ES+Kibana

基于之前的文章&#xff0c;精简操作而来 让ELK在同一个docker网络下通过名字直接访问Ubuntu服务器ELK部署与实践使用 Docker 部署 canal 服务实现MySQL和ES实时同步Docker部署ES服务&#xff0c;canal全量同步的时候内存爆炸&#xff0c;ES/Canal Adapter自动关闭&#xff0c…

设计模式--工厂模式(Factory Pattern)

一、 什么是工厂模式 工厂模式&#xff08;Factory Pattern&#xff09;是一种创建型设计模式&#xff0c;它提供了一种创建对象的接口&#xff0c;但是将对象的实例化过程推迟到子类中。工厂模式允许通过调用一个共同的接口方法来创建不同类型的对象&#xff0c;而无需暴露对…

wireshark 流量抓包例题重现

[TOC](这里写目录标题 wireshark抓包方法wireshark组成 wireshark例题 wireshark抓包方法 wireshark组成 wireshark的抓包组成为&#xff1a;分组列表、分组详情以及分组字节流。 上面这一栏想要显示&#xff0c;使用&#xff1a;CtrlF 我们先看一下最上侧的搜索栏可以使用的…

LAMP架构详解+构建LAMP平台之Discuz论坛

LAMP架构详解构建LAMP平台之Discuz论坛 1、LAPM架构简介1.1动态资源与语言1.2LAPM架构得组成1.3LAPM架构说明1.4CGI和astcgi1.4.1CGI1.4.2fastcgi1.4.3CGI和fastcgi比较 2、搭建LAMP平台2.1编译安装apache httpd2.2编译安装mysql2.3编译安装php2.4安装论坛 1、LAPM架构简介 1.…

Mysql--技术文档--基本概念--《世界上最流行的关系型数据库之一》

官方网址 MySQL 阿丹&#xff1a; 作为关系型数据库管理的老大哥&#xff0c;一个合格的程序员多多少少一定要了解mysql库。 官方解释 MySQL是一个关系型数据库管理系统&#xff0c;由瑞典MySQL AB 公司开发&#xff0c;属于 Oracle 旗下产品。MySQL 是最流行的关系型数据库管…

SpringCache

SpringCache是Spring提供的一个缓存框架&#xff0c;在Spring3.1版本开始支持将缓存添加到现有的spring应用程序中&#xff0c;在4.1开始&#xff0c;缓存已支持JSR-107注释和更多自定义的选项。 Spring Cache利用了AOP&#xff0c;实现了基于注解的缓存功能&#xff0c;并且进…

智慧能源助力绿色发展

居民生活是碳排放的重要贡献源&#xff0c;作为居民生活的主要场所&#xff0c;社区是低碳城市建设的重要空间载体。推动低碳社区建设&#xff0c;逐渐打造低碳生活方式&#xff0c;是低碳社会建设的重要内容之一。智慧新能源公共设施助力碳中和&#xff0c;用于各社区改造&…