OpenCV基础知识(8)— 图形检测

前言:Hello大家好,我是小哥谈。图形检测是计算机视觉的一项重要功能。通过图形检测可以分析图像中可能存在的形状,然后对这些形状进行描绘,例如搜索并绘制图像的边缘,定位图像的位置,判断图像中有没有直线、有没有圆形等。虽然图形检测涉及非常深奥的数学算法,但是OpenCV已经将这些算法封装成了简单的方法,开发者只要学会如何调用方法、如何调整参数即可很好的实现检测功能。本节课就介绍如何检测图像的形状、图像所占的区域,以及如何查找图像中出现的几何图形等。🌈

 前期回顾:

         史上最全OpenCV常用方法及使用说明汇总,建议收藏!

         OpenCV基础知识(1)— OpenCV概述

         OpenCV基础知识(2)— 图像处理的基本操作

         OpenCV基础知识(3)— 图像数字化基础(像素、色彩空间)

         OpenCV基础知识(4)— 绘制图形

         OpenCV基础知识(5)— 几何变换

         OpenCV基础知识(6)— 滤波器

         OpenCV基础知识(7)— 腐蚀与膨胀

         目录

🚀1.图像的轮廓 

🚀2.轮廓的拟合

💥💥2.1 矩形包围框

💥💥2.2 圆形包围框

🚀3.Canny边缘检测

🚀4.霍夫变换

💥💥4.1 直线检测

💥💥4.2 圆环检测

🚀5.总结

🚀1.图像的轮廓 

轮廓,是指图像中图形或物体的外边缘线条。简单的几何图形轮廓是由平滑的线构成的,容易识别,但不规则的轮廓可能有许多个点构成,识别起来比较困难。

OpenCV提供的findContours()方法可以通过计算图像梯度来判断出图像的边缘,然后将边缘的点封装成数组返回。🌳

findContours()方法的语法格式如下:

contours,hierarchy = cv2.findContours(image,mode,method)

参数说明:

image:被检测的图像,必须是8位单通道二值图像。如果原始图像是彩色图像,必须转为灰度图像,并经过二值化阈值处理。

mode:轮廓的检索模式,具体值详见表。

参数值含义
cv2.RETR_EXTERNAL只检测外轮廓
CV2.RETR_LIST检测所有轮廓,但不建立层次关系。
CV2.RETR_CCOMP检测所有轮廓,并建立两级层次关系。
CV2.RETR_TREE检测所有轮廓,并建立树状结构的层次关系。

method:检测轮廓时使用的方法,具体值详见表。

参数值含义
cv2.CHAIN_APPROX_NONE储存轮廓上的所有点
cv2.CHAIN_APPROX_SIMPLE只保存水平、垂直或对角线轮廓的端点
CV2.CHAIN_APPROX_TC89_L1Ten-Chin1近似算法的一种
CV2.CHAIN_APPROX_TC89_KCOSTen-Chin1近似算法的一种

返回值说明:

contours:检测出的所有轮廓,list类型,每一个元素都是某个轮廓的像素坐标数组。

hierarchy:轮廓之间测层次关系。

通过findContours()方法找到图像轮廓之后,为了方便开发人员观测,最好能把轮廓画出来,于是OpenCV方法提供了drawContours()方法专门用来绘制这些轮廓。🌳

drawContours()方法的语法如下:

image = cv2.drawContours(image,contours,contourIdx,color,thickness,lineType,hierarchy,maxLevel,offse)

参数说明:

image:被绘制轮廓的原始图像,可以是多通道图像。

contours:findContours()方法得出的轮廓列表。

contourIdx:绘制轮廓的索引,如果为-1则绘制所有轮廓。

color:绘制颜色,使用RGB格式。

thickness:可选参数,画笔的粗细程度,如果该值为-1则绘制实心轮廓。

lineType:可选参数,绘制轮廓的线型。

hierarchy:可选参数,findContours()方法得出的层次关系。

maxLevel:可选参数,绘制轮廓的层次深度,最深绘制第maxLevel层。

offse:可选参数,偏移量,可以改变绘制结果的位置。

返回值说明:

image:同参数中的image,方法执行后原始图像中就包含绘制的轮廓了,可以不使用此返回值保存结果。

案例1:

绘制几何图像的轮廓,具体代码如下:

import cv2
img = cv2.imread("shape1.png")  # 读取原图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 彩色图像转为变成单通道灰度图像
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)  # 灰度图像转为二值图像
# 检测图像中出现的所有轮廓,记录轮廓的每一个点
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# 绘制所有轮廓,宽度为5,颜色为红色
cv2.drawContours(img, contours, -1, (0, 0, 255), 5)
cv2.imshow("img", img)  # 显示绘制结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:

案例2:

绘制花朵的轮廓。

绘制之前首先要降低图像中的噪声干扰,先进行滤波处理,再将图像处理成二值灰度图像,并检测出轮廓,再利用绘制轮廓的方法在原始图像中绘制轮廓🌺

具体代码如下:

import cv2
img = cv2.imread("flower.jpg")  # 读取原图
cv2.imshow("img", img)  # 显示原图
img = cv2.medianBlur(img, 5)  # 使用中值滤波去除噪点
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 原图从彩图变成单通道灰度图像
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)  # 灰度图像转化为二值图像
cv2.imshow("binary", binary)  # 显示二值化图像
# 获取二值化图像中的轮廓极轮廓层次数据
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(img, contours, -1, (0, 0, 255), 2)  # 在原图中绘制轮廓
cv2.imshow("contours", img)  # 显示绘有轮廓的图像
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:


🚀2.轮廓的拟合

拟合,是指将平面上的一系列点,用一条光滑的曲线连接起来。轮廓的拟合就是将凹凸不平的轮廓用平整的几何图形体现出来。

下面就为大家介绍如何按照轮廓绘制矩形包围框和圆形包围框。🌴

💥💥2.1 矩形包围框

矩形包围框是指图像轮廓的最小矩形边界。OpenCV提供的boundingRect()方法可以自动计算出轮廓最小矩形边界的坐标和宽高。🐳

boundingRect()方法的语法如下:

retval = cv2.boundingRect(array)

参数说明:

array:轮廓数组

返回值说明:

retval:元组类型,包含四个整数值,分别是最小矩形包围框左上角顶点的横坐标、左上角顶点的纵坐标、矩形的宽和矩形的高。所以也可以写成x,y,w,h = cv2.boundingRect(array)的形式。

案例:

为爆炸图形绘制矩形包围框。具体代码如下:

import cv2
img = cv2.imread("shape2.png")  # 读取原图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 从彩色图像变成单通道灰度图像
# 将灰度图像进行二值化阈值处理
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 获取二值化图像中的轮廓极轮廓层次数据
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
x, y, w, h = cv2.boundingRect(contours[0])  # 获取第一个轮廓的最小矩形边框,记录坐标和宽高
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 绘制红色矩形
cv2.imshow("img", img)  # 显示绘制结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:

💥💥2.2 圆形包围框

圆形包围框与矩形包围框同理,是图像轮廓的最小圆形边界。OpenCV提供的minEnclosingCircle()方法可以自动计算出轮廓最小圆形边界的圆心和半径。

minEnclosingCircle()方法的语法格式如下:

center,radius = cv2.minEnclosingCircle(points)

参数说明:

points:轮廓数组

返回值说明:

center:元组类型,包含两个浮点值,是最小圆形包围框圆心的横坐标和纵坐标。

radius:浮点类型,最小圆形包围框的半径。

案例:

为爆炸图形绘制圆形包围框。具体代码如下:

import cv2
img = cv2.imread("shape2.png")  # 读取原图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 从彩色图像变成单通道灰度图像
# 将灰度图像进行二值化阈值处理
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 获取二值化图像中的轮廓极轮廓层次数据
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
center, radius = cv2.minEnclosingCircle(contours[0])  # 获取最小圆形边框的圆心点和半径
x = int(round(center[0]))  # 圆心点横坐标转为近似整数
y = int(round(center[1]))  # 圆心点纵坐标转为近似整数
cv2.circle(img, (x, y), int(radius), (0, 0, 255), 2)  # 绘制圆形
cv2.imshow("img", img)  # 显示绘制结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

 运行效果如图所示:


🚀3.Canny边缘检测

Canny边缘检测算法是John F.Canny 于1986年开发出来的一个多级边缘检测算法,该算法根据像素的梯度变化寻找图像边缘,最终可以绘制出十分精细的二值边缘图像。🌿

OpenCV将Canny边缘检测算法封装在Canny()方法中,该方法的语法如下:

edgrs = cv2.Canny(image,threshold1,threshold2,apertureSize,L2gradient)

参数说明:

image:检测的原始图像

threshold1:计算过程中使用的第一个阈值,可以是最小阈值,也可以是最大阈值,通常用来设置最小阈值。

threshold2:计算过程中使用的第二个阈值,通常用来设置最大阈值。

apertureSize:可选参数,Sobel算子的孔径大小。

L2gradient:可选参数,计算图像梯度的标识,默认值为False。值为True时会采用更精准的算法进行计算。

返回值说明:

edges:计算后得出的边缘图像,是一个二值灰度图像。

说明:♨️♨️♨️

在开发过程中可以通过调整最小阈值和最大阈值来控制边缘检测的精细程度。当两个阈值都较小的时候,会检测出更多的细节;当两个阈值都较大的时候,会忽略较多的细节。

案例:

使用Canny算法检测美女图像,具体代码如下:

import cv2
img = cv2.imread("1.webp")  # 读取原图
r1 = cv2.Canny(img, 10, 50);  # 使用不同的阈值进行边缘检测cv2.imshow("img", img)  # 显示原图
cv2.imshow("r1", r1)  # 显示边缘检测结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:


🚀4.霍夫变换

 霍夫变换是一种特征检测,通过算法识别图像的特征,从而判断出图像中的特殊形状,例如直线和圆。下面就为大家介绍如何检测图像中的直线和圆。

💥💥4.1 直线检测

霍夫直线变换是通过霍夫坐标系的直线与笛卡尔坐标系的点之间的映射关系来判断图像中的点是否构成直线。OpenCV将此封装成了两个方法,分别是cv2.HoughLines()方法和

cv2.HoughLinesP()方法,前者用于检测无线延长的直线,后者用于检测线段。🌼

本节就介绍比较常用的HoughLinesP()方法

HoughLinesP()方法名称最后有一个大写的P,该方法只能检测二值灰度图像,也就是只有两种像素值的黑白图像。方法最后会把找出的所有线段的两个端点坐标保存成一个数组

HoughLinesP()方法的语法如下:

lines = cv2.HoughLinesP(image,rho,theta,threshold,minLineLength,maxLineGap)

参数说明:

image:检测的原始图像

rho:检测直线使用的半径步长,值为1时,表示检测所有可能的半径步长。

theta:搜索直线的角度,值为π/180时,表示检测的所有角度。

threshold:阈值,该值越小,检测的直线就越多。

minLineLength:线段的最小长度,小于该长度的直线不会记录到结果中。

maxLineGap:线段之间的最小距离。

返回值说明:

lines:一个数组,元素为所有检测出的线段,每个线段也是一个数组,内容为线段两个端点的横纵坐标,格式为[[[x1,y1,x2,y2],[x1,y1,x2,y2]]]。

说明:♨️​​​​​​​♨️​​​​​​​♨️

使用该方法前需要先为原始图像进行降噪处理,否则会影响检测结果。

案例:

检测笔图像中出现的直线,具体代码如下:

import cv2
import numpy as npimg = cv2.imread("pen.jpg")  # 读取原图
o = img.copy()  # 复制原图
o = cv2.medianBlur(o, 5)  # 使用中值滤波进行降噪
gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)  # 从彩色图像变成单通道灰度图像
binary = cv2.Canny(o, 50, 150)  # 绘制边缘图像
# 检测直线,精度为1,全角度,阈值为15,线段最短100,最小间隔为18
lines = cv2.HoughLinesP(binary, 1, np.pi / 180, 15, minLineLength=100, maxLineGap=18)
for line in lines:  # 遍历所有直线x1, y1, x2, y2 = line[0]  # 读取直线两个端点的坐标cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)  # 在原始图像上绘制直线
cv2.imshow("canny", binary)  # 显示二值化边缘图案
cv2.imshow("img", img)  # 显示绘制结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:

💥💥4.2 圆环检测

霍夫圆环变换的原理与霍夫直线变换类似。OpenCV提供的HoughCircle()方法用于检测图像中的圆,该方法在检测过程中进行两轮筛选:第一轮筛选会找出可能的是圆的圆心坐标,第二轮筛选会计算出这些圆心坐标可能的对应的半径长度。方法最后会将圆心坐标和半径长度封装成一个浮点型数组。🍃

HoughCircle()方法的语法格式如下:

circles = cv2.HoughCircle(image,method,dp,minDist,param1,param2,minRadius,maxRadius)

参数说明:

image:检测的原始图像

method:检测方法

dp:累加器分辨率与原始图像分辨率之比的倒数。值为1时,累加器与原始图像具有相同的分辨率;值为2时,累加器的分辨率为原始图像的1/2。通常使用1作为参数。

minDist:圆心之间的最小距离

param1:可选参数,Canny边缘检测使用的最大阈值。

param2:可选参数,检测圆环结果的投票数。第一轮筛选时投票数超过该值的圆才会进入第二轮筛选。值越大,检测出的圆越小,但越精准。

minRadius:可选参数,圆的最小半径。

maxRadius:可选参数,圆的最大半径。

返回值说明:

circles:一个数组,元素为所有检测出的圆,每个圆也是一个数组,内容为圆心的横、纵坐标和半径长度,格式为[[[x1,y1,r1],[x2,y2,r2]]]。

说明:♨️​​​​​​​♨️​​​​​​​♨️

使用该方法前需要先为原始图像进行降噪处理,否则会影响检测结果。

案例:

绘制硬币图像的圆环和对应圆心,具体代码如下:

import cv2
import numpy as npimg = cv2.imread("coin.jpg")  # 读取原图
o = img.copy()  # 复制原图
o = cv2.medianBlur(o, 5)  # 使用中值滤波进行降噪
gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)  # 从彩色图像变成单通道灰度图像
# 检测圆环,圆心最小间距为70,Canny最大阈值为100,投票数超过25。最小半径为10,最大半径为50
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 70, param1=100, param2=25, minRadius=10, maxRadius=50)
circles = np.uint(np.around(circles))  # 将数组元素四舍五入成整数
for c in circles[0]:  # 遍历圆环结果x, y, r = c  # 圆心横坐标、纵坐标和圆半径cv2.circle(img, (x, y), r, (0, 0, 255), 3)  # 绘制圆环cv2.circle(img, (x, y), 2, (0, 0, 255), 3)  # 绘制圆心
cv2.imshow("img", img)  # 显示绘制结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:


🚀5.总结

总结:

🍀(1)图像的轮廓:先对图像做二值化处理,cv2.findContours()检测轮廓,cv2.drawContours()绘制轮廓。

🍀(2)轮廓的拟合:包括矩形包围框和圆形包围框。

🍀(3)Canny边缘检测:最实用、最简单、效果最好的边缘检测方法。阈值越小,边缘越多。

🍀(4)霍夫变换:包括直线检测和圆环检测。其中,直线检测是检测之前先降噪,再做二值化阈值处理,圆环检测是检测之前先降噪,再转为单通道灰度图像。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/108616.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QtCreator指定Windows Kits版本

先说下事件起因:之前一直在用Qt5.12.6+vs2017在写程序,后面调研了一个开源库Qaterial,但是翻来覆去的编译都有问题,后面升级到了Qt5.15.2+vs2019来进行cmake的编译,搞定了Qaterial,但…

Uniapp笔记(八)初识微信小程序

一、微信小程序基本介绍 1、什么是微信小程序 微信小程序简称小程序,英文名Mini Program,是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或搜一下即可打开应用 小程序是一种新的开放能力&#…

键入网址到网页显示,期间发生了什么?

目录 1.DNS2.可靠传输 —— TCP3.远程定位 —— IP4.两点传输 —— MAC5.出口 —— 网卡6.送别者 —— 交换机(可省略)7.出境大门 —— 路由器8.数据包抵达服务器后9.响应过程:带有MAC、IP、TCP头部的完整HTTP报文: 1.DNS 客户端…

C++--两个数组的dp问题(2)

1.交错字符串 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 给定三个字符串 s1、s2、s3,请判断 s3 能不能由 s1 和 s2 交织(交错) 组成。 两个字符串 s 和 t 交织 的定义与过程如下,其中每个字符串都…

Redis—Redis介绍(是什么/为什么快/为什么做MySQL缓存等)

一、Redis是什么 Redis 是一种基于内存的数据库,对数据的读写操作都是在内存中完成,因此读写速度非常快,常用于缓存,消息队列、分布式锁等场景。 Redis 提供了多种数据类型来支持不同的业务场景,比如 String(字符串)、…

Vue中ElementUI结合transform使用时,发现弹框定位不准确问题

在近期开发中,需要将1920*1080放到更大像素大屏上演示,所以需要使用到transform来对页面进行缩放,但是此时发现弹框定位出错问题,无法准备定位到实际位置。 查看element-ui官方文档无果后,打算更换新的框架进行开发&am…

FFmpeg支持多线程编码并保存mp4文件示例

之前介绍的示例: (1).https://blog.csdn.net/fengbingchun/article/details/132129988 中对编码后数据保存成mp4 (2).https://blog.csdn.net/fengbingchun/article/details/132128885 中通过AVIOContext实现从内存读取数据 (3).https://blog.csdn.net/fengbingchun/…

自动设置服务器全教程

亲爱的爬虫探险家!在网络爬虫的世界里,自动设置代理服务器是一个非常有用的技巧。今天,作为一家代理服务器供应商,我将为你呈上一份轻松实用的教程,帮助你轻松搞定爬虫自动设置代理服务器。 一、为什么需要自动设置代…

C语言实现状态机

关于状态机,基础的知识点可以自行理解,讲解的很多,这里主要是想写一个有限状态机FSM通用的写法,目的在于更好理解,移植,节省代码阅读与调试时间,体现出编程之美。 传统的实现方案 if...else : …

Unittest 笔记:unittest拓展生成HTM报告发送邮件

HTMLTestRunner 是一个unitest拓展可以生成HTML 报告 下载地址:GitHub: https://github.com/defnnig/HTMLTestRunner HTMLTestRunner是一个独立的py文件,可以放在Lib 作为第三方模块使用或者作为项目的一部分。 方式1: 验证是否安装成功&…

基于Android的课程教学互动系统 微信小程序uniapp

教学互动是学校针对学生必不可少的一个部分。在学校发展的整个过程中,教学互动担负着最重要的角色。为满足如今日益复杂的管理需求,各类教学互动程序也在不断改进。本课题所设计的springboot基于Android的教学互动系统,使用SpringBoot框架&am…

Android TV开发之VerticalGridView

Android TV应用开发和手机应用开发是一样的,只是多了焦点控制,即选中变色。 androidx.leanback.widget.VerticalGridView 继承 BaseGridView , BaseGridView 继承 RecyclerView 。 所以 VerticalGridView 就是 RecyclerView ,使…

mysql下载

网址 MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/ 2、选择MSI进行安装 3、这里我选择离线安装 4、这里我选择直接下载 5、等待下载安装即可

【无法联网】电脑wifi列表为空的解决方案

打开电脑, 发现wifi列表为空, 点击设置显示未连接 首先检查是不是网卡驱动有问题, cmd, devmgmt.msc 找到网络适配器, 看看网卡前面是否有感叹号, 如果没有则说明网卡没问题, 有问题则重装驱动 看看网络协议是否设置正确 找到"控制面板\所有控制面板项\网络和共享中心&…

通讯录(C语言)

通讯录 一、基本思路及功能介绍二、功能实现1.基础菜单的实现2.添加联系人信息功能实现3.显示联系人信息功能实现4.删除联系人信息功能实现5.查找联系人信息功能实现6.修改联系人信息功能实现7.排序联系人信息功能实现8.加载和保存联系人信息功能实现 三、源文件展示1.test.c2.…

MATLAB图论合集(三)Dijkstra算法计算最短路径

本贴介绍最短路径的计算,实现方式为迪杰斯特拉算法;对于弗洛伊德算法,区别在于计算了所有结点之间的最短路径,考虑到MATLAB计算的便捷性,计算时只需要反复使用迪杰斯特拉即可,暂不介绍弗洛伊德的实现&#…

ChatGPT 与前端技术实现制作大屏可视化

像这样的综合案例实分析,我们可以提供案例,维度与指标数据,让ChatGPT与AIGC 帮写出完整代码,并进行一个2行2列的布局设置。 数据与指令如下: 商品名称 销量 目标 完成率 可乐 479 600 79.83% 雪碧 324 600 54.00% 红茶 379 600 63.…

Unity报错DllNotFoundException:sqlite3

Unity项目中要使用轻型数据库sqlite,除了导入sqlite3.dll外,还需要导入Mono.Data.Sqlite.dll和System.Data.dll(工程里或者编辑器里面有System.Data.dll时就不需要)两个文件。 如果在编辑器中运行出现 “DllNotFoundException:sql…

优化器调整策略

损失函数的作用是衡量模型输出与真实标签的差异。当我们有了这个loss之后,我们就可以通过反向传播机制得到参数的梯度,那么我们如何利用这个梯度进行更新参数使得模型的loss逐渐的降低呢? 优化器的作用 Pytorch的优化器: 管理并…

nacos总结1

5.Nacos注册中心 国内公司一般都推崇阿里巴巴的技术,比如注册中心,SpringCloudAlibaba也推出了一个名为Nacos的注册中心。 5.1.认识和安装Nacos Nacos是阿里巴巴的产品,现在是SpringCloud中的一个组件。相比Eureka功能更加丰富&#xff0c…