神经网络的工作原理

目录

神经网络的介绍

神经网络的组成

神经网络的工作原理

Numpy 实现神经元

Numpy 实现前向传播

Numpy 实现一个可学习的神经网络


神经网络的介绍

神经网络受人类大脑启发的算法。简单来说,当你睁开眼睛时,你看到的物体叫做数据,再由你大脑中处理数据的 Nuerons(细胞)操作,识别出你所看到的物体,这是神经网络的工作过程。人工神经网络(Artificial Neural Network,ANN),它们不像你大脑中的神经元一样操作,而是模拟神经网络的性质和功能。

神经网络的组成

人工神经网络由大量高度相互关联的处理单元(神经元)协同工作来解决特定问题。首先介绍一种名为感知机的神经元。感知机接收若干个输入,每个输入对应一个权重值(可以看成常数),用它们做一些数学运算,然后产生一个输出。

图片

接下来用形象化的例子解释感知机,假设有一个计划,周末去徒步,影响计划是否进行的因素有这些:

(1)周末是否加班;
(2)周末的天气是否恶劣;
(3)往返徒步地点是否方便;

对于不同人,三个因素的影响效果也不一样,如果 输入(2)对于你来说影响非常大,这样就设置的权重值就大,反之权重值就小。

再将输入二值化,对于天气不恶劣,设置为 1(),对于天气恶劣,设置为 0(),天气的影响程度通过权重值体现,设置为 10()。同样设置输入(1)的权值为 8(),输入(3)的权重值为 1()。输出二值化是去徒步为 1(),不去为 0()。

假设对于感知机,如果  的结果大于某阈值(如 5),表示去徒步 ,随机调整权重,感知机的结果会不一样。

一个典型的神经网络有成百上千个神经元(感知机),排成一列的神经元也称为单元或是,每一列的神经元会连接左右两边的神经元。感知机有输入和输出,对于神经网络是有输入单元与输出单元,在输入单元和输出单元之间是一层或多层称为隐藏单元。一个单元和另一个单元之间的联系用权重表示,权重可以是正数(如一个单元激发另一个单元) ,也可以是负数(如一个单元抑制或抑制另一个单元)。权重越高,一个单位对另一个单位的影响就越大。

图片

神经网络的工作原理

神经网络的工作大致可分为前向传播反向传播,类比人们学习的过程,

前向传播如读书期间,学生认真学习知识点,进行考试,获得自己对知识点的掌握程度;

反向传播是学生获得考试成绩作为反馈,调整学习的侧重点。

以下展示了 2 个输入和 2 个输出的神经网络:

图片

图片

大多数真实世界的数据是非线性的,我们希望神经元学习这些非线性表示,可以通过激活函数将非线性引入神经元。例如徒步例子中的阈值,激活函数 ReLU(Rectified Linear Activation Function)的阈值为 0,对于大于 0 的输入,输出为输入值,对于小于 0 的输入值,输出为 0,公式和图像表示如下:

 

图片

这里扩展一下,激活函数有很多种,例如常用的 sigmoid 激活函数,只输出范围内的数字 ,它将无界输入转换为具有良好、可预测的输出形式,sigmoid 函数的公式和图像如下。

 

加入 ReLU 激活函数的神经网络如下图所示:

图片

 

加入 SoftMax 函数的神经网络如下图所示:

图片

获得神经网络的输出值 (0.98, 0.02) 之后,与真实值 (1, 0) 比较,非常接近,仍然需要与真实值比较,计算差距(也称误差,用  e表示),就跟摸底考试一样,查看学习的掌握程度,同样神经网络也要学习,让输出结果无限接近真实值,也就需要调整权重值,这里就需要反向传播了。

图片

反向传播过程中需要依据误差值来调整权重值,可以看成参数优化过程,简要过程是,先初始化权重值,再增加或减少权重值,查看误差是否最小,变小继续上一步相同操作,变大则上一步相反操作,调整权重后查看误差值,直至误差值变小且浮动不大。

 

斜率的大小表明变化的速率,意思是当斜率比较大的情况下,权重  变化所引起的结果变化也大。把这个概念引入求最小化的问题上,以权重导数乘以一个系数作为权重更新的数值,这个系数我们叫它学习率(learning rate),这个系数能在一定程度上控制权重自我更新,权重改变的方向与梯度方向相反,如下图所示,权重的更新公式如下:

 

 

import numpy as npdef mse-loss(y_true, y_pred):# y_true and y_pred are numpy arrays of the same length.return ((y_true - y_pred) ** 2).mean()y_true = np.array([1, 0, 0, 1])
y_pred = np.array([0, 0, 0, 0])print(mse_loss(y_true, y_pred)) # 0.5

Numpy 实现神经元

以上介绍了神经网络的基本结构及数学原理,为了方便大家理解,参数围绕着 ,后续继续深入学习,便遇到  参数(称为偏差),神经元会有以下这样的形式。

图片

 

Python 代码实现如下:

import numpy as npdef sigmoid(x):# Our activation function: f(x) = 1 / (1 + e^(-x))return 1 / (1 + np.exp(-x))class Neuron:def __init__(self, weights, bias):self.weights = weightsself.bias = biasdef feedforward(self, inputs):# Weight inputs, add bias, then use the activation functiontotal = np.dot(self.weights, inputs) + self.biasreturn sigmoid(total)weights = np.array([0, 1]) # w1 = 0, w2 = 1
bias = 4                   # b = 4
n = Neuron(weights, bias)x = np.array([2, 3])       # x1 = 2, x2 = 3
print(n.feedforward(x))    # 0.9990889488055994

Numpy 实现前向传播

同样在神经网络中,如下图所示,这个网络有 2 个输入,一个隐藏层有 2 个神经元( 和 ),和一个有 1 个神经元的输出层()。

图片

输出如下:

 

图片

Python 代码实现如下:

import numpy as npclass OurNeuralNetwork:'''A neural network with:- 2 inputs- a hidden layer with 2 neurons (h1, h2)- an output layer with 1 neuron (o1)Each neuron has the same weights and bias:- w = [0, 1]- b = 0'''def __init__(self):weights = np.array([0, 1])bias = 0# The Neuron class here is from the previous sectionself.h1 = Neuron(weights, bias)self.h2 = Neuron(weights, bias)self.o1 = Neuron(weights, bias)def feedforward(self, x):out_h1 = self.h1.feedforward(x)out_h2 = self.h2.feedforward(x)# The inputs for o1 are the outputs from h1 and h2out_o1 = self.o1.feedforward(np.array([out_h1, out_h2]))return out_o1network = OurNeuralNetwork()
x = np.array([2, 3])
print(network.feedforward(x)) # 0.7216325609518421

Numpy 实现一个可学习的神经网络

终于到了实现一个完整的神经网络的时候了,把参数全安排上,别吓着了~

图片

现在有一个明确的目标:最小化神经网络的损,将损失写成多变量函数,其中 。

图片

变量多的时候,求其中一个变量的导数时,成为求偏导数,接下来求  的偏导数,公式如下:

图片

橙色框的内容关于损失函数可以直接得到:

图片

绿色框的内容,继续分析 :

图片

 只影响  不影响 ,绿色框的内容拆解为:

图片

最终关于 的偏导数,公式如下:

图片

为了便于大家理解,将公式放在一起,请查阅~

图片

这里会对 sigmoid 函数求导,求导的结果如下:

图片

获得偏导数后,回忆一下参数的更新公式:

学习率偏导数

  • 如果偏导数为正,则参数减少;

  • 如果偏导数为负,则参数增加。

如果我们对网络中的每个权重和偏差都这样做,损失将慢慢减少。

整个过程如下:

  • 1.从我们的数据集中选择一个样本,进行操作

  • 2.计算损失中关于权重和偏差的偏导数

  • 3.使用更新公式更新每个权重和偏差

  • 4.回到步骤1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/110880.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里云服务器搭建FRP实现内网穿透-P2P

前言 在了解frp - p2p之前,请先了解阿里云服务器搭建FRP实现内网穿透-转发: 文章地址 1、什么是frp - p2p frp(Fast Reverse Proxy)是一个开源的反向代理工具,它提供了多种功能,包括端口映射、流量转发和内网穿透等。…

【Cesium创造属于你的地球】实现地球展示、灵活进行坐标转换、视角切换

大家好,我是AIC山鱼!👉这是我的主页 🐋作为CSDN博主和前端优质创作者✍,我致力于为大家带来新颖、脱俗且有趣的内容。 🐱我还创建了山鱼社区,这是一个独特的社区🏠,&…

无涯教程-分类算法 - 简介

分类可以定义为根据观测值或给定数据点预测类别的过程。分类的输出可以采用"黑色"或"白色"或"垃圾邮件"或"非垃圾邮件"的形式。 在数学上,分类是从输入变量(X)到输出变量(Y)近似映射函数(f)的任务,它属于有监督…

「CSS|前端开发|页面布局」03 开发网站所需要知道的CSS:如何实现你想要的页面布局

本文主要介绍如何分析页面布局,了解HTML标签元素的默认布局以及如何修改标签元素的布局方式,最终能够结合CSS框架实现任意我们看到或者想到的页面布局。 文章目录 本系列前文传送门一、场景说明二、页面布局设计逻辑三、CSS布局编写逻辑HTML元素的默认布…

论文阅读:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

前言 要弄清MAML怎么做,为什么这么做,就要看懂这两张图。先说MAML**在做什么?**它是打着Mate-Learing的旗号干的是few-shot multi-task Learning的事情。具体而言就是想训练一个模型能够使用很少的新样本,快速适应新的任务。 定…

Mac软件删除方法?如何删除不会有残留

Mac电脑如果有太多无用的应用程序,很有可能会拖垮Mac系统的运行速度。因此,卸载电脑中无用的软件是优化Mac系统运行速度的最佳方式之一。Mac卸载应用程序的方式是和Windows有很大的区别,特别对于Mac新用户来说,如何无残留的卸载删…

Confluence使用教程(用户篇)

1、如何创建空间 可以把空间理解成一个gitlab仓库,空间之间相互独立,一般建议按照部门(小组的人太少,没必要创建空间)或者按照项目分别创建空间 2、confluence可以创建两种类型的文档:页面和博文 从内容上来…

【ubuntu】 20.04 网络连接器图标不显示、有线未托管、设置界面中没有“网络”选项等问题解决方案

问题 在工作中 Ubuntu 20.04 桌面版因挂机或不当操作,意外导致如下问题 1、 Ubuntu 网络连接图标消失 2、 有线未托管 上图中展示的是 有线 已连接 ,故障的显示 有线 未托管 或其他字符 3、 ”设置“ 中缺少”网络“选项 上图是设置界面&#xff0c…

【Linux】进程控制

目录 一、进程创建1.fork创建子进程2.写时拷贝 二、进程退出1.进程退出方式2.进程退出码3.exit 函数和 _exit 函数 三、进程等待1.概念2.wait3.waitpid4.获取子进程status 四、进程程序替换1.原理2.进程替换接口① execl② execv③ execlp④ execvp⑤ execle 一、进程创建 1.f…

如何使用装rancher安装k8s集群(k8s集群图形化管理工具)

前言 kubernetes集群的图形化管理工具主要有以下几种: 1、 Kubernetes Dashborad: Kubernetes 官方提供的图形化工具 2、 Rancher: 目前比较主流的企业级kubernetes可视化管理工具 3、各个云厂商Kubernetes集成的管理器 4、 Kuboard: 国产开源Kubernetes可视化管理…

C++ 改善程序的具体做法 学习笔记

1、尽量用const enum inline替换#define 因为#define是做预处理操作,编译器从未看见该常量,编译器刚开始编译,它就被预处理器移走了,而#define的本质就是做替换,它可能从来未进入记号表 解决方法是用常量替换宏 语言…

提升代码可读性与可维护性:利用责任链模式优化你的Spring Boot代码

1. 基本介绍 责任链是一种非常常见的设计模式, 具体我就不介绍了, 本文是讲解如何在SpringBoot中优雅的使用责任链模式 1.1. 代码执行流程 基本步骤如下 : SpringBoot启动时, 需要获取 handler 对应Bean, 不同业务对应着不同的多个处理器, 比如 购票业务, 可能需要检查参数是…

运算符(个人学习笔记黑马学习)

算数运算符 加减乘除 #include <iostream> using namespace std;int main() {int a1 10;int a2 20;cout << a1 a2 << endl;cout << a1 - a2 << endl;cout << a1 * a2 << endl;cout << a1 / a2 << endl;/*double a3 …

GPU版本pytorch(Cuda12.1)安装教程

我们通过Pytorch官网安装torch的时候&#xff0c;会发现常常由于网速问题安装不成功&#xff0c;下面提供一种简单的方法可以成功安装Cuda12.1&#xff0c;亲测有效。 目录 一、常规方法 二、有效方法 2.1 创建并激活虚拟环境 2.2 添加清华源 2.3 安装torch 一、常规方法…

惠普NS1020激光打印机碳粉警告提示及添加碳粉方法

本文也适用于惠普NS1020、1020c 和 1020w 系列打印机。 通过碳粉量指示灯检查碳粉量。 如果碳粉量是满的或指示器显示 1&#xff0c;可选择添加一个碳粉或者忽略不添加。如果碳粉量指示灯显示 2或 2 和碳粉量警告感叹号图标 &#xff0c;则表示碳粉量不足或严重不足&#xff0…

Mysql--技术文档--MVCC(Multi-Version Concurrency Control | 多版本并发控制)

MVCC到底是什么 MVCC&#xff08;Multi-Version Concurrency Control&#xff09;是一种并发控制机制&#xff0c;用于解决并发访问数据库时的数据一致性和隔离性问题。MVCC允许多个事务同时读取数据库的同一数据&#xff0c;而不会相互干扰或导致冲突。 在传统的并发控制机制中…

远程教育:别催了,在线巡课真爽啊

随着远程教育和在线学习的兴起&#xff0c;教学活动的场景正逐渐从传统的实体教室转向虚拟的线上平台&#xff0c;这也催生了对教学质量监管的新需求。 在线巡课系统在这一背景下应运而生&#xff0c;它不仅能够实时观察教师的教学过程&#xff0c;还能够量化评估教学效果&…

Element——table排序,上移下移功能。及按钮上一条下一条功能

需求&#xff1a;table排序&#xff0c;可操作排序上移下移功能。判断第一行上移禁用和最后一行下移禁用&#xff0c;排序根据后端返回的字段 <el-table:data"tableData"style"width: 100%"><el-table-column type"index" label"序…

先进API生产力工具eqable HTTP,一站式开发调试工具推荐

简介 Reqable是什么? Regable Fiddler/Charles Postman Reqable是HTTP一站式开发调试国产化解决方案&#xff0c;拥有更便捷的体验&#xff0c;更先进的协议&#xff0c;更高效的性能和更精致的界面。 Reqable是一款跨平台的专业HTTP开发和调试工具&#xff0c;在全平台支持…

APSIM模型应用与参数优化、批量模拟

APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物生长模拟模型之一。APSIM模型有Classic和Next Generation两个系列模型&#xff0c;能模拟几十种农作物、牧草和树木的土壤-植物-大气过程&#xff0c;被广泛应用于精细农业、水肥管理、气候变化、粮食安…