基于社交网络算法优化的BP神经网络(预测应用) - 附代码

基于社交网络算法优化的BP神经网络(预测应用) - 附代码

文章目录

  • 基于社交网络算法优化的BP神经网络(预测应用) - 附代码
    • 1.数据介绍
    • 2.社交网络优化BP神经网络
      • 2.1 BP神经网络参数设置
      • 2.2 社交网络算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用社交网络算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.社交网络优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 社交网络算法应用

社交网络算法原理请参考:https://blog.csdn.net/u011835903/article/details/122390020

社交网络算法的参数设置为:

popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))
其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从社交网络算法的收敛曲线可以看到,整体误差是不断下降的,说明社交网络算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/111104.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java【手撕双指针】LeetCode 18. “四数之和“, 图文详解思路分析 + 代码

文章目录 前言一、四数之和1, 题目2, 思路分析3, 代码 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: 📕 JavaSE基础: 基础语法, 类和对象, 封装继承多态, 接口, 综合小练习图书管理系统等 📗 Java数据结构: 顺序表, 链表, 堆…

Docker--harbor私有仓库部署与管理

目录 1、搭建本地私有仓库 #首先下载 registry 镜像 #在 daemon.json 文件中添加私有镜像仓库地址 #运行 registry 容器 #为镜像打标签 #上传到私有仓库 #列出私有仓库的所有镜像 ​ #列出私有仓库的 centos 镜像有哪些tag ​ #先删除原有的 centos 的镜像,再测试…

什么是响应式图片?如何在网页中实现响应式图片?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 响应式图片&#xff08;Responsive Images&#xff09;⭐ 实现响应式图片的方法1. 使用<img>标签的srcset属性2. 使用<picture>元素3. 使用CSS的max-width属性4. 使用响应式图片库 ⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&…

4.RabbitMQ高级特性 幂等 可靠消息 等等

一、如何保证生产者生产消息100%的投递成功 保障消息的成功发出保障MQ节点的成功接收发送端收到MQ节点&#xff08;Broker&#xff09;确认应答完善的消息进行补偿机制 1. 理解Confirm确认消息机制 消息的确认&#xff0c;是指生产者投递消息后&#xff0c;如果Broker收到消…

自然语言处理2-NLP

目录 自然语言处理2-NLP 如何把词转换为向量 如何让向量具有语义信息 在CBOW中 在Skip-gram中 skip-gram比CBOW效果更好 CBOW和Skip-gram的算法实现 Skip-gram的理想实现 Skip-gram的实际实现 自然语言处理2-NLP 在自然语言处理任务中&#xff0c;词向量&#xff08;…

Linux知识点 -- 网络基础(一)

Linux知识点 – 网络基础&#xff08;一&#xff09; 文章目录 Linux知识点 -- 网络基础&#xff08;一&#xff09;一、网络发展二、协议1.OSI七层模型2.TCP/IP五层&#xff08;或四层&#xff09;模型 三、网络传输基本流程1.局域网中的两台主机通信流程2.跨网段的两台主机间…

Vue中使用vue-drag-resize实现窗体可拖拽和随意缩放大小

场景 若依前后端分离版手把手教你本地搭建环境并运行项目&#xff1a; 若依前后端分离版手把手教你本地搭建环境并运行项目_ruoyi本地调式_霸道流氓气质的博客-CSDN博客 在上面的基础上&#xff0c;实现弹窗窗体可移动以及随意缩放大小。 效果如下 注&#xff1a; 博客&am…

C语言——类型转换

数据有不同的类型&#xff0c;不同类型数据之间进行混合运算时涉及到类型的转换问题。 转换的方法有两种&#xff1a; 自动转换(隐式转换)&#xff1a;遵循一定的规则&#xff0c;由编译系统自动完成强制类型转换&#xff1a;把表达式的运算结果强制转换成所需的数据类型 语法格…

day 29 柱状图

# 导入柱状图的包 from pyecharts.charts import Bar from pyecharts.options import LabelOpts # 创建柱状图对象 bar Bar()# 添加x轴数据 bar.add_xaxis(["中国", "美国", "英国"])# 添加y轴数据# 设置数值标签在又侧 bar.add_yaxis("G…

RabbitMQ---Spring AMQP

Spring AMQP 1. 简介 Spring有很多不同的项目&#xff0c;其中就有对AMQP的支持&#xff1a; Spring AMQP的页面&#xff1a;http://spring.io/projects/spring-amqp 注意这里一段描述&#xff1a; Spring-amqp是对AMQP协议的抽象实现&#xff0c;而spring-rabbit 是对协…

项目:点餐系统3mysql知识回顾MySQL客户端

连接数据库 mysql -uroot -p 密码&#xff1a;空 一、第三方库&#xff1a;MySQL 数据库-存储并管理数据的仓库&#xff0c;是一个C/S架构 MySQL客户端通过sql来告诉MySQL服务器&#xff0c;自己需要做什么操作 1.sql语句 sql&#xff1a;structure query language结构化查询…

【推荐】Spring与Mybatis集成整合

目录 1.概述 2.集成 2.1代码演示&#xff1a; 3.整合 3.1概述 3.2 进行整合分页 接着上两篇&#xff0c;我已经写了Mybatis动态之灵活使用&#xff0c;mybatis的分页和特殊字符的使用方式接下来把它们集成起来&#xff0c;是如何的呢&#x1f447;&#x1f447;&#x1…

C++--动态规划背包问题(1)

1. 【模板】01背包_牛客题霸_牛客网 你有一个背包&#xff0c;最多能容纳的体积是V。 现在有n个物品&#xff0c;第i个物品的体积为vivi​ ,价值为wiwi​。 &#xff08;1&#xff09;求这个背包至多能装多大价值的物品&#xff1f; &#xff08;2&#xff09;若背包恰好装满&a…

java八股文面试[多线程]——自旋锁

优点&#xff1a; 1. 自旋锁尽可能的减少线程的阻塞&#xff0c;这对于锁的竞争不激烈&#xff0c;且占用锁时间非常短的代码块来说性能能大幅度的提升&#xff0c;因为自旋的消耗会小于线程阻塞挂起再唤醒的操作的消耗 &#xff0c;这些操作会导致线程发生两次上下文切换&…

数据库相关知识2

数据库知识2 关系完整性 数据完整性 指的是数据库中的数据的准确性和可靠性 实体完整性约束&#xff1a; 目的&#xff1a; 在表中至少有一个唯一的 标识&#xff0c;主属性字段中&#xff0c;不为空&#xff0c;不重复 主键约束&#xff1a;唯一 不重复 不为空 primary k…

CSS 滚动容器与固定 Tabbar 自适应的几种方式

问题 容器高度使用 px 定高时&#xff0c;随着页面高度发生变化&#xff0c;组件展示的数量不能最大化的铺满&#xff0c;导致出现底部留白。容器高度使用 vw 定高时&#xff0c;随着页面宽度发生变化&#xff0c;组件展示的数量不能最大化的铺满&#xff0c;导致出现底部留白…

数学建模(四)整数规划—匈牙利算法

目录 一、0-1型整数规划问题 1.1 案例 1.2 指派问题的标准形式 2.2 非标准形式的指派问题 二、指派问题的匈牙利解法 2.1 匈牙利解法的一般步骤 2.2 匈牙利解法的实例 2.3 代码实现 一、0-1型整数规划问题 1.1 案例 投资问题&#xff1a; 有600万元投资5个项目&…

Android——基本控件(下)(十九)

1. 菜单&#xff1a;Menu 1.1 知识点 &#xff08;1&#xff09;掌握Android中菜单的使用&#xff1b; &#xff08;2&#xff09;掌握选项菜单&#xff08;OptionsMenu&#xff09;的使用&#xff1b; &#xff08;3&#xff09;掌握上下文菜单&#xff08;ContextMenu&am…

Windows10 系统安装教程

多虚不如少实。 一、 下载安装包 下载前景&#xff1a;网上下载的 windows10 系统一般都有捆绑软件&#xff0c;用户体验不爽&#xff0c;所以建议到 正规渠道下载 windows10 系统的不同版本。另外网上也有一些 windows10 系统的镜像文件 可以直接一键安装&#xff0c;…

C# Emgu.CV 条码检测

效果 项目 代码 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using Emgu.CV; using Emgu.CV.Util; using static Emgu.C…