暴力递归转动态规划(二)

上一篇已经简单的介绍了暴力递归如何转动态规划,如果在暴力递归的过程中发现子过程中有重复解的情况,则证明这个暴力递归可以转化成动态规划。
这篇帖子会继续暴力递归转化动态规划的练习,这道题有点难度。

题目
给定一个整型数组arr[],代表数值不同的纸牌排成一条线。玩家A和玩家B依次拿走每张纸牌。规定玩家A先拿,玩家B后拿,但是每个玩家每次只能拿走最左边或者最右边的牌,玩家A和玩家B都绝顶聪明,请返回最后获胜者的分数。

暴力递归
依然是先从暴力递归开始写起,一个先手拿,一个后手拿,两个人都绝顶聪明,都知道怎么拿可以利益最大化。
先手的拿完第一个之后,再拿的时候,就要从后手拿完的数组里再挑选了。
同理,如果后手的等先手的拿了之后,是不是就可以从剩余的数组里挑选最大利益的拿了。
依然先确定base case:
如果先手拿,最理想的状态就是当数组剩下最后一个数,依然可以被我拿走。
如果后手拿,最悲催的连数组最后一个数我都拿不到。
代码中f()函数是代表在数组L~ R范围上返回上先手拿能拿到的最大值返回。
g()函数代表在数组L ~ R范围上后手拿,能够获取的最大值。
需要注意的是身份的转变,如果先手拿之后,再拿的时候就会变成后手,第二个后手拿的时候,虽然我是后手,但是也是从数组中挑选利益最大的拿,留给先手拿的人的也是不好的,所以我会变成先手。

//先手方法
public static int f(int[] arr,int Lint R){//base case:先手拿,并且数组中剩一个元素,我拿走if(L == R){return arr[L];}//因为可以选择从左边拿和右边拿,从左边拿下一次就是L + 1开始,右边拿就是 R - 1 开始。//需要注意的是我从左或者从右拿完之后,再拿就是拿别人拿剩下的了,要以后手姿态获取其余分数,所以要调用g()方法int p1 = arr[L] + g(arr,L + 1,R);int p2 = arr[R] + g(arr, L, R -1);//两种决策中取最大值return Math.max(p1,p2);
}
//后手方法
public static int g(int[] arr,int L,int R){//剩最后一个也不是我的,毛都拿不到,return 0if(L == R){return 0;}//后手方法是在先手方法后,挑选最大值,那如果先手方法选择了L,则我要从L + 1位置选,//如果先手选择了R,那我要从R - 1位置开始往下选。//是从对手选择后再次选择最大值int p1 = f(arr,L + 1,R);int p2 = f(arr,L,R - 1);//因为是后手,是在先手后做决定,是被迫的,所以取Min。return Math.min(p1,p2);
}

先手后手方法已经确定,来看主流程怎么调用

public static int win1(int[] arr){//如果是无效数组,则返回一个无效数字 -1 if(arr == null || arr.length == 0){return -1;}int first = f(arr, 0 ,arr.length - 1);int second = g(arr,0,arr.length - 1);return Math.max(first,second);
}

暴力递归的分析和代码已经搞定,接下来我们通过分析暴力递归的调用过程来实现第一步的优化,找它的依赖,找它的重复解。
举一个具体的例子,arr[]范围 0~ 7,根据上面暴力递归的代码逻辑,我们来看看它的依赖关系和调用过程。如果确定了可变参数以及依赖关系,是不是就可以尝试着优化成动态规划。
在这里插入图片描述
根据代码逻辑,要么是取左边L + 1,要么是取右边 R - 1,所以可以确定可变参数是L和R,并且整个流程下来会发现有重复解的情况。
不过有些不同的是,这个是双层递归循环依赖调用,所以如果根据可变参数参数L,R来构建缓存表的话,则需要2个不同的缓存表分别记录。

优化
前面已经分析出整个暴力递归的调用过程,并发现了重复解,其中可变参数是L、R,根据L、R构建缓存表,因为是f()和g()的循环依赖调用,所以需要准备两张缓存表。

public static int win2(int[] arr) {if (arr == null || arr.length == 0) {return -1;}int N = arr.length;int[][] fmap = new int[N][N];int[][] gmap = new int[N][N];for (int i = 0; i < N; i++) {for (int j = 0; j < N; j++) {fmap[i][j] = -1;gmap[i][j] = -1;}}int first = f1(arr, 0, arr.length - 1, fmap, gmap);int second = g1(arr, 0, arr.length - 1, fmap, gmap);return Math.max(first, second);}public static int f1(int[] arr, int L, int R, int[][] fmap, int[][] gmap) {// != -1,说明之前计算过该值,直接返回即可if (fmap[L][R] != -1) {return fmap[L][R];}int ans = 0;if (L == R){ans = arr[L];}else{int p1 = arr[L] + g1(arr, L + 1, R, fmap, gmap);int p2 = arr[R] + g1(arr, L, R - 1, fmap, gmap);ans = Math.max(p1, p2);}//这一步能够取得的最大值fmap[L][R] = ans;return ans;}public static int g1(int[] arr, int L, int R, int[][] fmap, int[][] gmap) {if (gmap[L][R] != -1){return gmap[L][R];}//因为如果 L == R,后手方法会返回0,默认ans也是等于0,省略一步判断int ans = 0;if (L != R){int p1 = f1(arr,L + 1,R,fmap,gmap);int p2 = f1(arr,L,R - 1,fmap,gmap);ans = Math.min(p1,p2);}gmap[L][R] = ans;return ans;}

二次优化
我们上面已经创建了缓存表,并找到了变量L、R,我们现在不妨举一个例子,并将缓存表画出来,来看一下表中每一列的对应关系,如果我们能找到这个缓存表的对应关系,是不是将表构建出来以后,就可以直接获取获胜者的最大值。
在这里插入图片描述
数组arr = {7,4,16,15,1} 因为有两张缓存表,所以需要将两张表的依赖关系都找出。接下来,回到最开始的暴力递归方法,根据代码逻辑一步一步找出依赖关系。

public static int win1(int[] arr) {if (arr == null || arr.length == 0) {return -1;}int first = f(arr, 0, arr.length - 1);int second = g(arr, 0, arr.length - 1);return Math.max(first, second);}public static int f(int[] arr, int L, int R) {if (L == R) {return arr[L];}int p1 = arr[L] + g(arr, L + 1, R);int p2 = arr[R] + g(arr, L, R - 1);return Math.max(p1, p2);}public static int g(int[] arr, int L, int R) {if (L == R) {return 0;}int p1 = f(arr, L + 1, R);int p2 = f(arr, L, R - 1);return Math.min(p1, p2);}

从先手方法f()和后手方法g()的base case可以看出,如果当L == R时,f()方法中此时就是等于数组arr[L]本身的值,而g()中为0,又因为,每次我只选L或只选R,当L = R时就return了,所以我的L始终不会 > R。我们所要求的L ~ R 范围是整个数组0 ~ 4的值,此时图可以填充成这样。
在这里插入图片描述
再来接着往下看,如果此时LR随便给一个值,比如说当前fmap中L = 1,R = 3,来接着看它的依赖过程。
在这里插入图片描述
根据代码可以看出,它依赖的是g()方法中L +1和R - 1,所以对应在gmap中的依赖就是圆圈标记的部分。对应的,同样 L = 1 R = 3在gmap中也是依赖fmap对应的位置。
在这里插入图片描述
那现在有缓存表中每个位置的依赖关系,还有fmap和gmap当L == R时的值,是不是就可以推算出其他格子中的值。

代码

 public static int win3(int[] arr) {if (arr == null || arr.length == 0) {return -1;}int N = arr.length;int[][] fmap = new int[N][N];int[][] gmap = new int[N][N];//根据base  case填充fmap,gmap都是0,数组初始化值也是0,不用填充for (int i = 0; i < N; i++) {fmap[i][i] = arr[i];}//根据对角线填充,从第一列开始for (int startCol = 1; startCol < N; startCol++) {int L = 0;int R = startCol;while (R < N) {//将调用的g()和f()都替换成对应的缓存表fmap[L][R] = Math.max(arr[L] + gmap[L + 1][R], arr[R] + gmap[L][R - 1]);gmap[L][R] = Math.min(fmap[L + 1][R], fmap[L][R - 1]);L++;R++;}}//最后从L ~ R位置,取最大值return Math.max(fmap[0][N -1],gmap[0][N-1]);}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/111329.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

element-ui 弹窗里面嵌套弹窗,解决第二个弹窗被遮罩层掩盖无法显示的问题

当我们在 element-ui 中使用弹窗嵌套弹窗时&#xff0c;会出现第二个弹窗打开时被一个遮罩层挡着&#xff0c;就像下面这样&#xff1a; 下面提供两种解决方案 &#xff1a; 一、第一种方案 我们查询element-ui 官网可以发现 el-dialog 有这样几个属性&#xff1a; 具体使用就…

hadoop 学习:mapreduce 入门案例三:顾客信息与订单信息相关联(联表)

这里的知识点在于如何合并两张表&#xff0c;事实上这种业务场景我们很熟悉了&#xff0c;这就是我们在学习 MySQL 的时候接触到的内连接&#xff0c;左连接&#xff0c;而现在我们要学习 mapreduce 中的做法 这里我们可以选择在 map 阶段和reduce阶段去做 数据&#xff1a; …

java版工程项目管理系统源码+系统管理+系统设置+项目管理+合同管理+二次开发

工程项目各模块及其功能点清单 一、系统管理 1、数据字典&#xff1a;实现对数据字典标签的增删改查操作 2、编码管理&#xff1a;实现对系统编码的增删改查操作 3、用户管理&#xff1a;管理和查看用户角色 4、菜单管理&#xff1a;实现对系统菜单的增删改查操…

人工智能会成为人类的威胁吗?马斯克、扎克伯格、比尔·盖茨出席

根据消息人士透露&#xff0c;此次人工智能洞察论坛将是一次历史性的聚会&#xff0c;吸引了来自科技界的许多重量级人物。与会者们将共同探讨人工智能在科技行业和社会发展中的巨大潜力以及可能带来的挑战。 埃隆马斯克&#xff0c;特斯拉和SpaceX的首席执行官&#xff0c;一直…

如何提高视频清晰度?视频调整清晰度操作方法

现在很多小伙伴通过制作短视频发布到一些短视频平台上记录生活&#xff0c;分享趣事。但制作的视频有些比较模糊&#xff0c;做视频的小伙伴应该都知道&#xff0c;视频画质模糊不清&#xff0c;会严重影响观众的观看体验。 通过研究&#xff0c;总结了以下几点严重影响的点 …

Android12之ABuffer数据处理(三十四)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药. 更多原创,欢迎关注:Android…

Nacos集群搭建

集群结构 三个nacos节点的地址&#xff1a; 节点ipportnacos1127.0.0.18845nacos2127.0.0.18846nacos3127.0.0.18847 集群步骤 搭建集群的基本步骤&#xff1a; 搭建数据库&#xff0c;初始化数据库表结构 下载nacos安装包 配置nacos 启动nacos集群 nginx反向代理 初始化…

02调制+滤波器+冲激函数的傅立叶变换

目录 一、调制方式 1.1 什么是调制&#xff1f; 1.2 为什么要调制&#xff1f; 1.3 如何调制&#xff1f; 1.4 调制包含的信号类型&#xff1f; 1. 消息信号 2. 载波信号 3. 调制信号 1.5 调制类型&#xff1f; 1. 调幅 2. 调频 3. 调相 4. 模拟脉冲调制 5. 脉冲…

WSL Opencv with_ffmpeg conan1.60.0

我是ubuntu18. self.options[“opencv”].with_ffmpeg True 关键是gcc版本需要conan支持&#xff0c;比如我的是&#xff1a; compilergcc compiler.version7.5 此外还需要安装系统所需库&#xff1a; https://qq742971636.blog.csdn.net/article/details/132559789 甚至来…

C# NetTopologySuite+ProjNet 任意图形类型坐标转换

添加引用&#xff1a;NetTopologySuite、ProjNet、ProjNet.SRID Program.cs文件&#xff1a; using ProjNet.CoordinateSystems; using ProjNet.CoordinateSystems.Transformations; using ProjNet.SRID; using System; using System.Collections.Generic; using System.Linq;…

unordered-------Hash

✅<1>主页&#xff1a;我的代码爱吃辣&#x1f4c3;<2>知识讲解&#xff1a;数据结构——哈希表☂️<3>开发环境&#xff1a;Visual Studio 2022&#x1f4ac;<4>前言&#xff1a;哈希是一种映射的思想&#xff0c;哈希表即使利用这种思想&#xff0c;…

前端基础1——HTML标记语言

文章目录 一、基本了解二、HTML常用标签2.1 文本格式化标签2.2 列表标签2.3 超链接标签2.4 图片标签2.5 表格标签2.6 表单标签2.6.1 提交表单2.6.2 下拉表单2.6.3 按钮标签 2.7 布局标签 一、基本了解 网页组成&#xff08;index.html页面&#xff09;&#xff1a; HTML标记语言…

Verilog开源项目——百兆以太网交换机(一)架构设计与Feature定义

Verilog开源项目——百兆以太网交换机&#xff08;一&#xff09;架构设计与Feature定义 &#x1f508;声明&#xff1a;未经作者允许&#xff0c;禁止转载 &#x1f603;博主主页&#xff1a;王_嘻嘻的CSDN主页 &#x1f511;全新原创以太网交换机项目&#xff0c;Blog内容将聚…

23.8.11.用apifox端口号与java接口链接的时候少了个/导致连接不成功。

用apifox端口号与java接口链接的时候少了个/导致连接不成功。 原因分析&#xff0c;因为拼接的位置少了个/ 如图所示

【Java转Go】快速上手学习笔记(六)之网络编程篇一

目录 TCP一个简单案例server.go 服务端client.go 客户端 HTTPserver.go 服务端client.go 客户端 RPC一个很简单的示例server.go 服务端client.go 客户端 WebSocketserver.go 服务端client.go 客户端 完整代码server.go 服务端client.go 客户端 go往期文章笔记&#xff1a; 【J…

(笔记四)利用opencv识别标记视频中的目标

预操作&#xff1a; 通过cv2将视频的某一帧图片转为HSV模式&#xff0c;并通过鼠标获取对应区域目标的HSV值&#xff0c;用于后续的目标识别阈值区间的选取 img cv.imread(r"D:\data\123.png") img cv.cvtColor(img, cv.COLOR_BGR2HSV) plt.figure(1), plt.imshow…

开始MySQL之路——MySQL 事务(详解分析)

MySQL 事务概述 MySQL 事务主要用于处理操作量大&#xff0c;复杂度高的数据。比如说&#xff0c;在人员管理系统中&#xff0c;你删除一个人员&#xff0c;你即需要删除人员的基本资料&#xff0c;也要删除和该人员相关的信息&#xff0c;如信箱&#xff0c;文章等等&#xf…

打造互动体验:品牌 DTC 如何转变其私域战略

越来越多的品牌公司选择采用DTC 模式与消费者进行互动&#xff0c;而非仅仅销售产品。通过与消费者建立紧密联系&#xff0c;DTC模式不仅可以提供更具成本效益的规模扩张方式&#xff0c;还能够控制品牌体验、获取宝贵的第一方数据并提升盈利能力。然而DTC模式的经济模型比许多…

Docker创建Consul并添加权限控制

一、部署Consul 1、拉取镜像&#xff1a; docker pull consul:<consul-version> 2、运行 docker run --name consul1 -p 8300:8300/tcp -p 8301:8301/tcp -p 8301:8301/udp -p 8302:8302/tcp -p 8302:8302/udp -p 8500:8500 -p 8600:8600/tcp -p 8600:8600/udp -v /h…

数据结构——栈

栈 栈的理解 咱们先不管栈的数据结构什么&#xff0c;先了解栈是什么&#xff0c;栈就像一个桶一样&#xff0c;你先放进去的东西&#xff0c;被后放进的的东西压着&#xff0c;那么就需要把后放进行的东西拿出才能拿出来先放进去的东西&#xff0c;如图1&#xff0c;就像图1中…