计算机毕设 基于深度学习的植物识别算法 - cnn opencv python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 具体实现
  • 3 数据收集和处理
  • 3 MobileNetV2网络
  • 4 损失函数softmax 交叉熵
    • 4.1 softmax函数
    • 4.2 交叉熵损失函数
  • 5 优化器SGD
  • 6 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 **基于深度学习的植物识别算法 **

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

1 课题背景

植物在地球上是一种非常广泛的生命形式,直接关系到人类的生活环境,目前,植物识别主要依靠相关行业从业人员及有经验专家实践经验,工作量大、效率低。近年来,随着社会科技及经济发展越来越快,计算机硬件进一步更新,性能也日渐提高,数字图像采集设备应用广泛,设备存储空间不断增大,这样大量植物信息可被数字化。同时,基于视频的目标检测在模式识别、机器学习等领域得到快速发展,进而基于图像集分类方法研究得到发展。
本项目基于深度学习实现图像植物识别。

2 具体实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 数据收集和处理

数据是深度学习的基石
数据的主要来源有: 百度图片, 必应图片, 新浪微博, 百度贴吧, 新浪博客和一些专业的植物网站等
爬虫爬取的图像的质量参差不齐, 标签可能有误, 且存在重复文件, 因此必须清洗。清洗方法包括自动化清洗, 半自动化清洗和手工清洗。
自动化清洗包括:

  • 滤除小尺寸图像.
  • 滤除宽高比很大或很小的图像.
  • 滤除灰度图像.
  • 图像去重: 根据图像感知哈希.

半自动化清洗包括:

  • 图像级别的清洗: 利用预先训练的植物/非植物图像分类器对图像文件进行打分, 非植物图像应该有较低的得分; 利用前一阶段的植物分类器对图像文件 (每个文件都有一个预标类别) 进行预测, 取预标类别的概率值为得分, 不属于原预标类别的图像应该有较低的得分. 可以设置阈值, 滤除很低得分的文件; 另外利用得分对图像文件进行重命名, 并在资源管理器选择按文件名排序, 以便于后续手工清洗掉非植物图像和不是预标类别的图像.
  • 类级别的清洗

手工清洗: 人工判断文件夹下图像是否属于文件夹名所标称的物种, 这需要相关的植物学专业知识, 是最耗时且枯燥的环节, 但也凭此认识了不少的植物.

3 MobileNetV2网络

简介

MobileNet网络是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。

主要改进点

相对于MobileNetV1,MobileNetV2 主要改进点:

  • 引入倒残差结构,先升维再降维,增强梯度的传播,显著减少推理期间所需的内存占用(Inverted Residuals)
  • 去掉 Narrow layer(low dimension or depth) 后的 ReLU,保留特征多样性,增强网络的表达能力(Linear Bottlenecks)
  • 网络为全卷积,使得模型可以适应不同尺寸的图像;使用 RELU6(最高输出为 6)激活函数,使得模型在低精度计算下具有更强的鲁棒性
  • MobileNetV2 Inverted residual block 如下所示,若需要下采样,可在 DW 时采用步长为 2 的卷积
  • 小网络使用小的扩张系数(expansion factor),大网络使用大一点的扩张系数(expansion factor),推荐是5~10,论文中 t = 6 t = 6t=6

倒残差结构(Inverted residual block

ResNet的Bottleneck结构是降维->卷积->升维,是两边细中间粗

而MobileNetV2是先升维(6倍)-> 卷积 -> 降维,是沙漏形。
在这里插入图片描述区别于MobileNetV1, MobileNetV2的卷积结构如下:
在这里插入图片描述
因为DW卷积不改变通道数,所以如果上一层的通道数很低时,DW只能在低维空间提取特征,效果不好。所以V2版本在DW前面加了一层PW用来升维。

同时V2去除了第二个PW的激活函数改用线性激活,因为激活函数在高维空间能够有效地增加非线性,但在低维空间时会破坏特征。由于第二个PW主要的功能是降维,所以不宜再加ReLU6。
在这里插入图片描述
tensorflow相关实现代码

import tensorflow as tf
import numpy as np
from tensorflow.keras import layers, Sequential, Modelclass ConvBNReLU(layers.Layer):def __init__(self, out_channel, kernel_size=3, strides=1, **kwargs):super(ConvBNReLU, self).__init__(**kwargs)self.conv = layers.Conv2D(filters=out_channel, kernel_size=kernel_size, strides=strides, padding='SAME', use_bias=False,name='Conv2d')self.bn = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='BatchNorm')self.activation = layers.ReLU(max_value=6.0)   # ReLU6def call(self, inputs, training=False, **kargs):x = self.conv(inputs)x = self.bn(x, training=training)x = self.activation(x)return xclass InvertedResidualBlock(layers.Layer):def __init__(self, in_channel, out_channel, strides, expand_ratio, **kwargs):super(InvertedResidualBlock, self).__init__(**kwargs)self.hidden_channel = in_channel * expand_ratioself.use_shortcut = (strides == 1) and (in_channel == out_channel)layer_list = []# first bottleneck does not need 1*1 convif expand_ratio != 1:# 1x1 pointwise convlayer_list.append(ConvBNReLU(out_channel=self.hidden_channel, kernel_size=1, name='expand'))layer_list.extend([# 3x3 depthwise conv layers.DepthwiseConv2D(kernel_size=3, padding='SAME', strides=strides, use_bias=False, name='depthwise'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='depthwise/BatchNorm'),layers.ReLU(max_value=6.0),#1x1 pointwise conv(linear) # linear activation y = x -> no activation functionlayers.Conv2D(filters=out_channel, kernel_size=1, strides=1, padding='SAME', use_bias=False, name='project'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='project/BatchNorm')])self.main_branch = Sequential(layer_list, name='expanded_conv')def call(self, inputs, **kargs):if self.use_shortcut:return inputs + self.main_branch(inputs)else:return self.main_branch(inputs)  

4 损失函数softmax 交叉熵

4.1 softmax函数

Softmax函数由下列公式定义
在这里插入图片描述
softmax 的作用是把 一个序列,变成概率。

在这里插入图片描述

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,所有概率的和将等于1。

python实现

def softmax(x):shift_x = x - np.max(x)    # 防止输入增大时输出为nanexp_x = np.exp(shift_x)return exp_x / np.sum(exp_x)

PyTorch封装的Softmax()函数

dim参数:

  • dim为0时,对所有数据进行softmax计算
  • dim为1时,对某一个维度的列进行softmax计算
  • dim为-1 或者2 时,对某一个维度的行进行softmax计算
import torch
x = torch.tensor([2.0,1.0,0.1])
x.cuda()
outputs = torch.softmax(x,dim=0)
print("输入:",x)
print("输出:",outputs)
print("输出之和:",outputs.sum())

4.2 交叉熵损失函数

定义如下:
在这里插入图片描述
python实现

def cross_entropy(a, y):return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))# tensorflow version
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))# numpy version
loss = np.mean(-np.sum(y_*np.log(y), axis=1))

PyTorch实现
交叉熵函数分为二分类(torch.nn.BCELoss())和多分类函数(torch.nn.CrossEntropyLoss()

# 二分类 损失函数
loss = torch.nn.BCELoss()
l = loss(pred,real)
# 多分类损失函数
loss = torch.nn.CrossEntropyLoss()

5 优化器SGD

简介
SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。
在这里插入图片描述
pytorch调用方法:

torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

相关代码:

    def step(self, closure=None):"""Performs a single optimization step.Arguments:closure (callable, optional): A closure that reevaluates the modeland returns the loss."""loss = Noneif closure is not None:loss = closure()for group in self.param_groups:weight_decay = group['weight_decay'] # 权重衰减系数momentum = group['momentum'] # 动量因子,0.9或0.8dampening = group['dampening'] # 梯度抑制因子nesterov = group['nesterov'] # 是否使用nesterov动量for p in group['params']:if p.grad is None:continued_p = p.grad.dataif weight_decay != 0: # 进行正则化# add_表示原处改变,d_p = d_p + weight_decay*p.datad_p.add_(weight_decay, p.data)if momentum != 0:param_state = self.state[p] # 之前的累计的数据,v(t-1)# 进行动量累计计算if 'momentum_buffer' not in param_state:buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()else:# 之前的动量buf = param_state['momentum_buffer']# buf= buf*momentum + (1-dampening)*d_pbuf.mul_(momentum).add_(1 - dampening, d_p)if nesterov: # 使用neterov动量# d_p= d_p + momentum*bufd_p = d_p.add(momentum, buf)else:d_p = buf# p = p - lr*d_pp.data.add_(-group['lr'], d_p)return loss

6 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/111619.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AndroidStudio3.5.2修改项目项目包名

公司项目要打造成产品进行演示&#xff0c;需要更换不同的包名进行安装在同一设备上&#xff0c;即所谓的马甲包 更改步骤基本一样 https://blog.csdn.net/qq_35270692/article/details/78336049 需要注意的是&#xff0c;按照上边的步骤修改完后&#xff0c;如果项目中有数据…

秒懂算法2

视频链接 : 希望下次秒懂的是算法题_哔哩哔哩_bilibili P1094 [NOIP2007 普及组] 纪念品分组 原题链接 : [NOIP2007 普及组] 纪念品分组 - 洛谷 思路 : 排序 贪心 双指针首先先对输入进来的数组进行排序(由小到大)运用贪心的思想 : 前后结合,令l1,rn,若a[l]a[r]<w…

开发智能应用的新范式:大数据、AI和云原生如何构建智能软件

文章目录 1.利用大数据实现智能洞察2. 集成人工智能和机器学习3. 云原生架构的弹性和灵活性4. 实现实时处理和响应5. 数据安全和隐私保护6. 可解释性和透明性7. 持续创新和迭代8. 数据伦理和合规性 &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &a…

macOS使用命令行连接Oracle(SQL*Plus)

Author: histonevonzohomail.com Date: 2023/08/25 文章目录 SQL\*Plus安装下载环境配置 SQL\*Plus远程连接数据库参考文献 原文地址&#xff1a;https://histonevon.top/archives/oracle-mac-sqlplus数据库安装&#xff1a;Docker安装Oracle数据库 (histonevon.top) SQL*Plus…

安防视频监控/视频集中存储/云存储平台EasyCVR无法播放HLS协议该如何解决?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、…

继承AndroidView Model的错误

ViewModelProvider(this)[RegisterViewModel::class.java] 一行简单的代码&#xff0c;总是报这个错误 Caused by: java.lang.NoSuchMethodException: com.xinfa.registerlogin.viewmodel.LoginViewModel. [class android.app.Application] 经过一下午的思索&#xff0c;终于找…

查看edge浏览器插件的安装位置

C:\Users\zhang\AppData\Local\Microsoft\Edge\User Data\Default\Extensions 这是我的目录&#xff0c;把中间的的替换成你的电脑用户名就可以了 你也可以先输入目录的部分名称&#xff0c;下拉找对应的目录

Spring boot中调用C/C++(dll)

添加JNA依赖 <dependency><groupId>net.java.dev.jna</groupId><artifactId>jna</artifactId><version>5.5.0</version> </dependency>准备C代码/C代码 如下是C代码&#xff0c;文件名&#xff1a;xizi.c #include <std…

【爬虫】5.5 Selenium 爬取Ajax网页数据

目录 AJAX 简介 任务目标 创建Ajax网站 创建服务器程序 编写爬虫程序 AJAX 简介 AJAX&#xff08;Asynchronous JavaScript And XML&#xff0c;异步 JavaScript 及 XML&#xff09; Asynchronous 一种创建交互式、快速动态网页应用的网页开发技术通过在后台与服务器进行…

Spring Security注销后未正确保存空的SecurityContext漏洞CVE-2023-20862

文章目录 0.前言漏洞Spring Security介绍 1.参考文档2.基础介绍3.解决方案3.1. 升级版本3.2. 临时替代方案 4.Spring Security使用教程简单代码示例 0.前言 背景&#xff1a;公司项目扫描到 Spring-security 组件 注销后未正确保存空的SecurityContext CVE-2023-20862 漏洞 高…

Angular安全专辑之三:授权绕过,利用漏洞控制管理员账户

这篇文章是针对实际项目中所出现的问题所做的一个总结。简单来说&#xff0c;就是授权绕过问题&#xff0c;管理员帐户被错误的接管。 详细情况是这样的&#xff0c;我们的项目中通常都会有用户身份验证功能&#xff0c;不同的用户拥有不同的权限。相对来说管理员账户所对应的…

数据治理与数据安全治理思考

大数据经过多年发展&#xff0c;在不同的业务场景下得到深入应用&#xff0c;在企业提升经营目标、促进经营决策&#xff0c;以及通过大数据应用促进经济发展、优化民生工程、解决生活服务便捷等场景起到了重要作用。特别是十九届四中全会史无前例的将“数据”作为新型生产要素…

java对时间序列每x秒进行分组

问题&#xff1a;将一个时间序列每5秒分一组&#xff0c;返回嵌套的list&#xff1b; 原理&#xff1a;int除int会得到一个int&#xff08;也就是损失精度&#xff09; 输入&#xff1a;排序后的list&#xff0c;每几秒分组值 private static List<List<Long>> get…

Autosar存储入门系列04_NvM的CRC比较机制及同/异步写

本文框架 0.前言1. NvM的CRC校验1.1 CRC 比较机制 2. NvM的同步写及异步写2.1 NvM的同步写2.1 NvM的异步写 0.前言 本系列是Autosar存储入门系列&#xff0c;希望能从学习者的角度把存储相关的知识点梳理一遍&#xff0c;这个过程中如果大家觉得有讲得不对或者不够清晰的地方&…

安防监控/磁盘阵列存储/视频汇聚平台EasyCVR调用rtsp地址返回的IP不正确是什么原因?

安防监控/云存储/磁盘阵列存储/视频汇聚平台EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有GB28181、RTSP/Onvif、RTMP等&#xff0c;以及厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等&#xff0c;能对外分发RTSP、RT…

火狐浏览器使用scss嵌套编写css无法识别问题

火狐浏览器使用scss嵌套编写css无法识别问题 版本&#xff1a; “node-sass”: “^4.14.1”, “sass-loader”: “^7.3.1”,vue版本&#xff1a; v2问题描述&#xff1a; 我的文件目录是这样的&#xff1a; 而在scss文件中我是这样书写的 .vue文件中 在火狐浏览器中 在谷…

每天 26,315 美元罚款?交通安全局要求特斯拉提供 Autopilot数据

根据美国国家公路交通安全管理局&#xff08;NHTSA&#xff09;最近的特别命令&#xff0c;特斯拉公司被要求提供关于其自动驾驶功能Autopilot的相关信息。这一命令是继NHTSA于2021年8月启动初步评估后&#xff0c;在2022年6月升级为正式调查的一部分&#xff0c;NHTSA近期对特…

文件上传漏洞-upload靶场3-4(全网最详细解读)

文件上传漏洞-upload靶场3-4关通关笔记&#xff08;全网最详细解读&#xff09; upload 第三关&#xff08;特殊后缀&#xff09; 思路 按照第一关和第二关的思路&#xff0c;先随便上传一个文件用burpsuite工具抓包&#xff0c;看它到底是前段验证还是后端验证。 上传一个we…

音频基本知识

声音传播方式: 1)声音的传播需要介质,在真空中不能传播; 2)声波属于纵波,即如下图传播方向与振动方向一致; 声音速度: 1)常温常压下,一般空气速度为340m/s; 2)温度越高,声速越大; 3)液体、固体的传播速度比空气快; 人耳可接收到的频域范围: 1)通常范围…

Gitee注册和使用

个人主页&#xff1a;点我进入主页 专栏分类&#xff1a;C语言初阶 C语言程序设计————KTV C语言小游戏 欢迎大家点赞&#xff0c;评论&#xff0c;收藏。 一起努力&#xff0c;一起奔赴大厂。 目录 1.Gitee 1.1Gitee是什么 1.2Gitee的注册以及远程仓库的创建…