java定位问题工具

一、使用 JDK 自带工具查看 JVM 情况

        在我的机器上运行 ls 命令,可以看到 JDK 8 提供了非常多的工具或程序:

        接下来,我会与你介绍些常用的监控工具。你也可以先通过下面这张图了解下各种工具的基本作用:

为了测试这些工具,我们先来写一段代码:启动 10 个死循环的线程,每个线程分配一个 10MB 左右的字符串,然后休眠 10 秒。可以想象到,这个程序会对 GC 造成压力。

//启动10个线程
IntStream.rangeClosed(1, 10).mapToObj(i -> new Thread(() -> {while (true) {//每一个线程都是一个死循环,休眠10秒,打印10M数据String payload = IntStream.rangeClosed(1, 10000000).mapToObj(__ -> "a").collect(Collectors.joining("")) + UUID.randomUUID().toString();try {TimeUnit.SECONDS.sleep(10);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(payload.length());}
})).forEach(Thread::start);TimeUnit.HOURS.sleep(1);

        修改 pom.xml,配置 spring-boot-maven-plugin 插件打包的 Java 程序的 main 方法类:

<plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><configuration><mainClass>org.geekbang.time.commonmistakes.troubleshootingtools.jdktool.CommonMistakesApplication</mainClass></configuration>
</plugin>

        然后使用 java -jar 启动进程,设置 JVM 参数,让堆最小最大都是 1GB:

java -jar common-mistakes-0.0.1-SNAPSHOT.jar -Xms1g -Xmx1g

1、jps

首先,使用 jps 得到 Java 进程列表,这会比使用 ps 来的方便:

        

➜  ~ jps
12707
22261 Launcher
23864 common-mistakes-0.0.1-SNAPSHOT.jar
15608 RemoteMavenServer36
23243 Main
23868 Jps
22893 KotlinCompileDaemon

2、jinfo

然后,可以使用 jinfo 打印 JVM 的各种参数:

➜  ~ jinfo 23864
Java System Properties:
#Wed Jan 29 12:49:47 CST 2020
...
user.name=zhuye
path.separator=\:
os.version=10.15.2
java.runtime.name=Java(TM) SE Runtime Environment
file.encoding=UTF-8
java.vm.name=Java HotSpot(TM) 64-Bit Server VM
...VM Flags:
-XX:CICompilerCount=4 -XX:ConcGCThreads=2 -XX:G1ConcRefinementThreads=8 -XX:G1HeapRegionSize=1048576 -XX:GCDrainStackTargetSize=64 -XX:InitialHeapSize=268435456 -XX:MarkStackSize=4194304 -XX:MaxHeapSize=4294967296 -XX:MaxNewSize=2576351232 -XX:MinHeapDeltaBytes=1048576 -XX:NonNMethodCodeHeapSize=5835340 -XX:NonProfiledCodeHeapSize=122911450 -XX:ProfiledCodeHeapSize=122911450 -XX:ReservedCodeCacheSize=251658240 -XX:+SegmentedCodeCache -XX:+UseCompressedClassPointers -XX:+UseCompressedOops -XX:+UseG1GCVM Arguments:
java_command: common-mistakes-0.0.1-SNAPSHOT.jar -Xms1g -Xmx1g
java_class_path (initial): common-mistakes-0.0.1-SNAPSHOT.jar
Launcher Type: SUN_STANDARD

        查看第 15 行和 19 行可以发现,我们设置 JVM 参数的方式不对,-Xms1g 和 -Xmx1g 这两个参数被当成了 Java 程序的启动参数,整个 JVM 目前最大内存是 4GB 左右,而不是 1GB。

        当我们怀疑 JVM 的配置很不正常的时候,要第一时间使用工具来确认参数。除了使用工具确认 JVM 参数外,你也可以打印 VM 参数和程序参数:

System.out.println("VM options");
System.out.println(ManagementFactory.getRuntimeMXBean().getInputArguments().stream().collect(Collectors.joining(System.lineSeparator())));
System.out.println("Program arguments");
System.out.println(Arrays.stream(args).collect(Collectors.joining(System.lineSeparator())));

        把 JVM 参数放到 -jar 之前,重新启动程序,可以看到如下输出,从输出也可以确认这次 JVM 参数的配置正确了:

➜  target git:(master) ✗ java -Xms1g -Xmx1g -jar common-mistakes-0.0.1-SNAPSHOT.jar test
VM options
-Xms1g
-Xmx1g
Program arguments
test

3、jvisualvm

        启动另一个重量级工具 jvisualvm 观察一下程序,可以在概述面板再次确认 JVM 参数设置成功了:

        继续观察监视面板可以看到,JVM 的 GC 活动基本是 10 秒发生一次,堆内存在 250MB 到 900MB 之间波动,活动线程数是 22。我们可以在监视面板看到 JVM 的基本情况,也可以直接在这里进行手动 GC 和堆 Dump 操作:

4、jconsole

        如果希望看到各个内存区的 GC 曲线图,可以使用 jconsole 观察。jconsole 也是一个综合性图形界面监控工具,比 jvisualvm 更方便的一点是,可以用曲线的形式监控各种数据,包括 MBean 中的属性值:

5、jstat

        同样,如果没有条件使用图形界面(毕竟在 Linux 服务器上,我们主要使用命令行工具),又希望看到 GC 趋势的话,我们可以使用 jstat 工具。

        jstat 工具允许以固定的监控频次输出 JVM 的各种监控指标,比如使用 -gcutil 输出 GC 和内存占用汇总信息,每隔 5 秒输出一次,输出 100 次,可以看到 Young GC 比较频繁,而 Full GC 基本 10 秒一次:

➜  ~ jstat -gcutil 23940 5000 100S0     S1     E      O      M     CCS    YGC     YGCT    FGC    FGCT    CGC    CGCT     GCT0.00 100.00   0.36  87.63  94.30  81.06    539   14.021    33    3.972   837    0.976   18.9680.00 100.00   0.60  69.51  94.30  81.06    540   14.029    33    3.972   839    0.978   18.9790.00   0.00   0.50  99.81  94.27  81.03    548   14.143    34    4.002   840    0.981   19.1260.00 100.00   0.59  70.47  94.27  81.03    549   14.177    34    4.002   844    0.985   19.1640.00 100.00   0.57  99.85  94.32  81.09    550   14.204    34    4.002   845    0.990   19.1960.00 100.00   0.65  77.69  94.32  81.09    559   14.469    36    4.198   847    0.993   19.6590.00 100.00   0.65  77.69  94.32  81.09    559   14.469    36    4.198   847    0.993   19.6590.00 100.00   0.70  35.54  94.32  81.09    567   14.763    37    4.378   853    1.001   20.1420.00 100.00   0.70  41.22  94.32  81.09    567   14.763    37    4.378   853    1.001   20.1420.00 100.00   1.89  96.76  94.32  81.09    574   14.943    38    4.487   859    1.007   20.4380.00 100.00   1.39  39.20  94.32  81.09    575   14.946    38    4.487   861    1.010   20.442

        其中,S0 表示 Survivor0 区占用百分比,S1 表示 Survivor1 区占用百分比,E 表示 Eden 区占用百分比,O 表示老年代占用百分比,M 表示元数据区占用百分比,YGC 表示年轻代回收次数,YGCT 表示年轻代回收耗时,FGC 表示老年代回收次数,FGCT 表示老年代回收耗时。

        继续来到线程面板可以看到,大量以 Thread 开头的线程基本都是有节奏的 10 秒运行一下,其他时间都在休眠,和我们的代码逻辑匹配:

点击面板的线程 Dump 按钮,可以查看线程瞬时的线程栈:

6、jstack

        通过命令行工具 jstack,也可以实现抓取线程栈的操作:

➜  ~ jstack 23940
2020-01-29 13:08:15
Full thread dump Java HotSpot(TM) 64-Bit Server VM (11.0.3+12-LTS mixed mode):..."main" #1 prio=5 os_prio=31 cpu=440.66ms elapsed=574.86s tid=0x00007ffdd9800000 nid=0x2803 waiting on condition  [0x0000700003849000]java.lang.Thread.State: TIMED_WAITING (sleeping)at java.lang.Thread.sleep(java.base@11.0.3/Native Method)at java.lang.Thread.sleep(java.base@11.0.3/Thread.java:339)at java.util.concurrent.TimeUnit.sleep(java.base@11.0.3/TimeUnit.java:446)at org.geekbang.time.commonmistakes.troubleshootingtools.jdktool.CommonMistakesApplication.main(CommonMistakesApplication.java:41)at jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(java.base@11.0.3/Native Method)at jdk.internal.reflect.NativeMethodAccessorImpl.invoke(java.base@11.0.3/NativeMethodAccessorImpl.java:62)at jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(java.base@11.0.3/DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke(java.base@11.0.3/Method.java:566)at org.springframework.boot.loader.MainMethodRunner.run(MainMethodRunner.java:48)at org.springframework.boot.loader.Launcher.launch(Launcher.java:87)at org.springframework.boot.loader.Launcher.launch(Launcher.java:51)at org.springframework.boot.loader.JarLauncher.main(JarLauncher.java:52)"Thread-1" #13 prio=5 os_prio=31 cpu=17851.77ms elapsed=574.41s tid=0x00007ffdda029000 nid=0x9803 waiting on condition  [0x000070000539d000]java.lang.Thread.State: TIMED_WAITING (sleeping)at java.lang.Thread.sleep(java.base@11.0.3/Native Method)at java.lang.Thread.sleep(java.base@11.0.3/Thread.java:339)at java.util.concurrent.TimeUnit.sleep(java.base@11.0.3/TimeUnit.java:446)at org.geekbang.time.commonmistakes.troubleshootingtools.jdktool.CommonMistakesApplication.lambda$null$1(CommonMistakesApplication.java:33)at org.geekbang.time.commonmistakes.troubleshootingtools.jdktool.CommonMistakesApplication$$Lambda$41/0x00000008000a8c40.run(Unknown Source)at java.lang.Thread.run(java.base@11.0.3/Thread.java:834)...

        抓取后可以使用类似fastthread这样的在线分析工具来分析线程栈。

7、jcmd

        我们来看一下 Java HotSpot 虚拟机的 NMT 功能。

        通过 NMT,我们可以观察细粒度内存使用情况,设置 -XX:NativeMemoryTracking=summary/detail 可以开启 NMT 功能,开启后可以使用 jcmd 工具查看 NMT 数据。

        我们重新启动一次程序,这次加上 JVM 参数以 detail 方式开启 NMT:

-Xms1g -Xmx1g -XX:ThreadStackSize=256k -XX:NativeMemoryTracking=detail

        在这里,我们还增加了 -XX:ThreadStackSize 参数,并将其值设置为 256k,也就是期望把线程栈设置为 256KB。我们通过 NMT 观察一下设置是否成功。

        启动程序后执行如下 jcmd 命令,以概要形式输出 NMT 结果。可以看到,当前有 32 个线程,线程栈总共保留了差不多 4GB 左右的内存。我们明明配置线程栈最大 256KB 啊,为什么会出现 4GB 这么夸张的数字呢,到底哪里出了问题呢?

➜  ~ jcmd 24404 VM.native_memory summary
24404:Native Memory Tracking:Total: reserved=6635310KB, committed=5337110KB
-                 Java Heap (reserved=1048576KB, committed=1048576KB)(mmap: reserved=1048576KB, committed=1048576KB)-                     Class (reserved=1066233KB, committed=15097KB)(classes #902)(malloc=9465KB #908)(mmap: reserved=1056768KB, committed=5632KB)-                    Thread (reserved=4209797KB, committed=4209797KB)(thread #32)(stack: reserved=4209664KB, committed=4209664KB)(malloc=96KB #165)(arena=37KB #59)-                      Code (reserved=249823KB, committed=2759KB)(malloc=223KB #730)(mmap: reserved=249600KB, committed=2536KB)-                        GC (reserved=48700KB, committed=48700KB)(malloc=10384KB #135)(mmap: reserved=38316KB, committed=38316KB)-                  Compiler (reserved=186KB, committed=186KB)(malloc=56KB #105)(arena=131KB #7)-                  Internal (reserved=9693KB, committed=9693KB)(malloc=9661KB #2585)(mmap: reserved=32KB, committed=32KB)-                    Symbol (reserved=2021KB, committed=2021KB)(malloc=1182KB #334)(arena=839KB #1)-    Native Memory Tracking (reserved=85KB, committed=85KB)(malloc=5KB #53)(tracking overhead=80KB)-               Arena Chunk (reserved=196KB, committed=196KB)(malloc=196KB)            

        重新以 VM.native_memory detail 参数运行 jcmd:

jcmd 24404 VM.native_memory detail

        有 16 个可疑线程,每一个线程保留了 262144KB 内存,也就是 256MB(通过下图红框可以看到,使用关键字 262144KB for Thread Stack from 搜索到了 16 个结果):

        ThreadStackSize 参数的单位是 KB,所以我们如果要设置线程栈 256KB,那么应该设置 256 而不是 256k。重新设置正确的参数后,使用 jcmd 再次验证下:

        除了用于查看 NMT 外,jcmd 还有许多功能。我们可以通过 help,看到它的所有功能:

jcmd 24781 help

        对于其中每一种功能,我们都可以进一步使用 help 来查看介绍。比如,使用 GC.heap_info 命令可以打印 Java 堆的一些信息

jcmd 24781 help GC.heap_info

二、使用 Wireshark 分析 SQL 批量插入慢的问题

        首先,我们可以在这里下载 Wireshark,启动后选择某个需要捕获的网卡。由于我们连接的是本地的 MySQL,因此选择 loopback 回环网卡:

        

        然后,Wireshark 捕捉这个网卡的所有网络流量。我们可以在上方的显示过滤栏输入 tcp.port == 6657,来过滤出所有 6657 端口的 TCP 请求(因为我们是通过 6657 端口连接 MySQL 的)。

        可以看到,程序运行期间和 MySQL 有大量交互。因为 Wireshark 直接把 TCP 数据包解析为了 MySQL 协议,所以下方窗口可以直接显示 MySQL 请求的 SQL 查询语句。我们看到,testuser 表的每次 insert 操作,插入的都是一行记录:

        如果列表中的 Protocol 没有显示 MySQL 的话,你可以手动点击 Analyze 菜单的 Decode As 菜单,然后加一条规则,把 6657 端口设置为 MySQL 协议:

        这就说明,我们的程序并不是在做批量插入操作,和普通的单条循环插入没有区别。调试程序进入 ClientPreparedStatement 类,可以看到执行批量操作的是 executeBatchInternal 方法。

 优化方式:

        如果有条件的话,优先把 insert 语句优化为一条语句,也就是 executeBatchedInserts 方法;

        如果不行的话,再尝试把 insert 语句优化为多条语句一起提交,也就是 executePreparedBatchAsMultiStatement 方法。

三、使用 MAT 分析 OOM 问题

        对于排查 OOM 问题、分析程序堆内存使用情况,最好的方式就是分析堆转储。        

        Java 的 OutOfMemoryError 是比较严重的问题,需要分析出根因,所以对生产应用一般都会这样设置 JVM 参数,方便发生 OOM 时进行堆转储:

-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=.

1、使用 MAT 分析 OOM 问题,一般可以按照以下思路进行:

       ① 通过支配树功能或直方图功能查看消耗内存最大的类型,来分析内存泄露的大概原因;

       ② 查看那些消耗内存最大的类型、详细的对象明细列表,以及它们的引用链,来定位内存泄露的具体点;

        ③ 配合查看对象属性的功能,可以脱离源码看到对象的各种属性的值和依赖关系,帮助我们理清程序逻辑和参数;

        ④ 辅助使用查看线程栈来看 OOM 问题是否和过多线程有关,甚至可以在线程栈看到 OOM 最后一刻出现异常的线程。

三、使用 Arthas 分析高 CPU 问题

        1、首先,通过 dashboard + thread 命令,基本可以在几秒钟内一键定位问题,找出消耗 CPU 最多的线程和方法栈;

        2、然后,直接 jad 反编译相关代码,来确认根因;

        3、此外,如果调用入参不明确的话,可以使用 watch 观察方法入参,并根据方法执行时间来过滤慢请求的入参。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/112589.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从LeakCanary看内存快照解析

在从LeakCanary看内存快照生成一节中&#xff0c;我们已经了解了hprof的生成&#xff0c;并且将生成的hprof文件通过Android Studio进行解析&#xff0c;确实发现了内存泄漏对象MainActivity&#xff0c;但是在实际开发中&#xff0c;要求开发者自己去手动pull hprof文件进行解…

5.基于多能互补的热电联供型微网优化运行

MATLAB代码链接&#xff1a;基于多能互补的热电联供型微网优化运行 MATLAB代码&#xff1a;基于多能互补的热电联供型微网优化运行 关键词&#xff1a;多能互补 综合需求响应 热电联产 微网 优化调度 参考文档&#xff1a;《基于多能互补的热电联供型微网优化运行》基本完全…

链表(详解)

一、链表 1.1、什么是链表 1、链表是物理存储单元上非连续的、非顺序的存储结构&#xff0c;数据元素的逻辑顺序是通过链表的指针地址实现&#xff0c;有一系列结点&#xff08;地址&#xff09;组成&#xff0c;结点可动态的生成。 2、结点包括两个部分&#xff1a;&#x…

OLED透明屏显示技术:未来显示科技的领航者

OLED透明屏显示技术是一种创新性的显示技术&#xff0c;它的特殊性质使其成为未来显示科技的领航者。 OLED透明屏具有高对比度、快速响应时间、广视角和低功耗等优势&#xff0c;同时&#xff0c;其透明度、柔性和薄型设计使其成为创新设计的理想选择。 本文将深入探讨OLED透…

NSS [NUSTCTF 2022 新生赛]Ezjava1

NSS [NUSTCTF 2022 新生赛]Ezjava1 题目描述&#xff1a;你能获取flag{1}吗 开题&#xff0c;一眼java web中的index.jsp。 默认index.jsp中的body内容是$END$ 附件jar包导入IDEA&#xff0c;会自动反编译。看看源码。 附件结构大致如此。主要看classes.com.joe1sn中的代码就…

MyBatisx代码生成

MyBatisx代码生成 1.创建数据库表 CREATE TABLE sys_good (good_id int(11) NOT NULL,good_name varchar(255) COLLATE utf8mb4_general_ci DEFAULT NULL,good_desc varchar(255) COLLATE utf8mb4_general_ci DEFAULT NULL,PRIMARY KEY (good_id) ) ENGINEInnoDB DEFAULT CHA…

【C++设计模式】用动画片《少年骇客》(Ben10)来解释策略模式

2023年8月25日&#xff0c;周五上午 今天上午学习设计模式中的策略模式时&#xff0c;发现这个有点像很多卡通片里面的变身器... 2023年8月26日&#xff0c;周六上午 更新&#xff1a;和简单工厂模式结合 目录 用策略模式写主角的变身器 使用策略模式的好处和简单工厂模式结…

手写实现call() apply() bind()函数,附有详细注释,包含this指向、arguments讲解

手写实现call() apply() bind()函数是很经典的问题&#xff0c;但是能掰扯清楚的文章确实不算多&#xff0c;于是笔者才决定写下本文&#xff0c;希望能给读者带来一些启发&#xff0c;如有错误欢迎指正。 目录 补充知识 函数中的this指向 类数组对象arguments call() 原理…

每日三题 1448统计二叉树中好节点的个数 100相同的树 101对称二叉树

1448 题目 给你一棵根为 root 的二叉树&#xff0c;请你返回二叉树中好节点的数目。 「好节点」X 定义为&#xff1a;从根到该节点 X 所经过的节点中&#xff0c;没有任何节点的值大于 X 的值。 示例 1&#xff1a; 输入&#xff1a;root [3,1,4,3,null,1,5] 输出&#xff…

弯道超车必做好题集锦三(C语言选择题)

前言&#xff1a; 编程想要学的好&#xff0c;刷题少不了&#xff0c;我们不仅要多刷题&#xff0c;还要刷好题&#xff01;为此我开启了一个弯道超车必做好题锦集的系列&#xff0c;每篇大约10题左右。此为第三篇选择题篇&#xff0c;该系列会不定期更新&#xff0c;后续还会…

MongoDB实验——在Java应用程序中操作 MongoDB 数据

在Java应用程序中操作 MongoDB 数据 1. 启动MongoDB Shell 2. 切换到admin数据库&#xff0c;使用root账户 3.开启Eclipse&#xff0c;创建Java Project项目&#xff0c;命名为MongoJava File --> New --> Java Project 4.在MongoJava项目下新建包&#xff0c;包名为mo…

《Go 语言第一课》课程学习笔记(十三)

方法 认识 Go 方法 Go 语言从设计伊始&#xff0c;就不支持经典的面向对象语法元素&#xff0c;比如类、对象、继承&#xff0c;等等&#xff0c;但 Go 语言仍保留了名为“方法&#xff08;method&#xff09;”的语法元素。当然&#xff0c;Go 语言中的方法和面向对象中的方…

C++------map和set的使用

文章目录 关联式容器键值对树型结构的关联式容器set的介绍map的介绍 关联式容器 什么是关联式容器&#xff1f;它与序列式容器有什么区别&#xff1f; 关联式容器也是用来存储数据的&#xff0c;与序列式容器不同的是&#xff0c;其里面存储的是<key&#xff0c;value>结…

【数据结构】手撕顺序表

一&#xff0c;概念及结构 顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构&#xff0c;一般情况下采用数组存储&#xff1b; 在数组上完成数据的增删查改。 1&#xff0c; 静态顺序表&#xff1a;使用定长数组存储元素。 2.&#xff0c;动态顺序表&#xff1…

系统架构设计高级技能 · 云原生架构设计理论与实践

系列文章目录 系统架构设计高级技能 软件架构概念、架构风格、ABSD、架构复用、DSSA&#xff08;一&#xff09;【系统架构设计师】 系统架构设计高级技能 系统质量属性与架构评估&#xff08;二&#xff09;【系统架构设计师】 系统架构设计高级技能 软件可靠性分析与设计…

webservice调用对接第三方系统

#webservice调用对接第三方系统# 最近接到一个任务&#xff0c;需要对接第三方数据&#xff0c;第三方提供对接方式的是通过webservice调用&#xff0c;webservice调用有好几种方式&#xff0c;具体可以自行了解&#xff0c;我选择的是通过wsdl文件自动生成客户端代码对接。 …

基于野狗算法优化的BP神经网络(预测应用) - 附代码

基于野狗算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于野狗算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.野狗优化BP神经网络2.1 BP神经网络参数设置2.2 野狗算法应用 4.测试结果&#xff1a;5.Matlab代码 摘要…

计算机毕设之Python的高校成绩分析(含文档+源码+部署)

本系统阐述的是一个高校成绩分析系统的设计与实现&#xff0c;对于Python、B/S结构、MySql进行了较为深入的学习与应用。主要针对系统的设计&#xff0c;描述&#xff0c;实现和分析与测试方面来表明开发的过程。开发中使用了 django框架和MySql数据库技术搭建系统的整体架构。…

[Android]JNI的基础知识

目录 1.什么是JNI 2.配置JNI开发环境NDK 3.创建Native C类型的项目 4. 了解CMakeLists.txt 文件 5.了解native-lib.cpp 文件 6.在 Android 的 MainActivity 中调用 native-lib.cpp 中实现的本地方法 1.什么是JNI JNI&#xff08;Java Native Interface&#xff09;是一…

2023年8月22日OpenAI推出了革命性更新:ChatGPT-3.5 Turbo微调和API更新,为您的业务量身打造AI模型

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…