工服穿戴检测算法 工装穿戴识别算法

工服穿戴检测算法 工装穿戴识别算法利用yolo网络模型图像识别技术,工服穿戴检测算法 工装穿戴识别算法可以准确地识别现场人员是否穿戴了正确的工装,包括工作服、安全帽等。一旦检测到未穿戴的情况,将立即发出警报并提示相关人员进行整改。Yolo意思是You Only Look Once,它并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知道有哪些对象以及它们的位置。Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。

YOLO检测速度非常快。标准版本的YOLO可以每秒处理 45 张图像;YOLO的极速版本每秒可以处理150帧图像。这就意味着 YOLO 可以以小于 25 毫秒延迟,实时地处理视频。对于欠实时系统,在准确率保证的情况下,YOLO速度快于其他方法。YOLO的结构非常简单,就是单纯的卷积、池化最后加了两层全连接,从网络结构上看,与前面介绍的CNN分类网络没有本质的区别,最大的差异是输出层用线性函数做激活函数,因为需要预测bounding box的位置(数值型),而不仅仅是对象的概率。所以粗略来说,YOLO的整个结构就是输入图片经过神经网络的变换得到一个输出的张量。

Yolo先使用ImageNet数据集对前20层卷积网络进行预训练,然后使用完整的网络,在PASCAL VOC数据集上进行对象识别和定位的训练。Yolo的最后一层采用线性激活函数,其它层都是Leaky ReLU。训练中采用了drop out和数据增强(data augmentation)来防止过拟合。将图片resize成448x448的大小,送入到yolo网络中,输出一个 7x7x30 的张量(tensor)来表示图片中所有网格包含的对象(概率)以及该对象可能的2个位置(bounding box)和可信程度(置信度)。在采用NMS(Non-maximal suppression,非极大值抑制)算法选出最有可能是目标的结果。

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/113550.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

W5100S-EVB-PICO主动PING主机IP检测连通性(十)

前言 上一章节我们用我们开发板在UDP组播模式下进行数据回环测试,本章我们用开发板去主动ping主机IP地址来检测与该主机之间网络的连通性。 什么是PING? PING是一种命令, 是用来探测主机到主机之间是否可通信,如果不能ping到某台…

自然语言处理(二):近似训练

近似训练 近似训练(Approximate Training)是指在机器学习中使用近似的方法来训练模型,以降低计算复杂度或提高训练效率。这种方法通常用于处理大规模数据集或复杂模型,其中精确的训练算法可能过于耗时或计算资源不足。 近似训练…

java安全问题处理

一、客户端的计算不可信 1、服务端计算价格,如果不这么做的话,很可能会被黑客利用,商品总价被恶意修改为比较低的价格。 二、客户端提交的参数需要校验 1、误以为客户端的数据来源是服务端,客户端就不可能提交异常数据 2、对参数进…

无涯教程-Android - Frame Layout函数

Frame Layout 旨在遮挡屏幕上的某个区域以显示单个项目,通常,应使用FrameLayout来保存单个子视图,因为在子视图彼此不重叠的情况下,难以以可扩展到不同屏幕尺寸的方式组织子视图。 不过,您可以使用android:layout_grav…

TSMaster小功能分享—Python小程序如何导入外部库

今天给大家介绍TSMaster功能之Python小程序如何导入外部库。通过在 TSMaster 默认的解析器路径下导入外部库来介绍,以便我们去使用 Python 外部库。TSMaster 默认 Python 解析器下安装外部库。 步骤一 在 TSMaster 工具->系统信息->python 环境设置中选择打开…

未来科技城携手加速科技 共建集成电路测试公共服务平台!

8月26日,2023未来产业发展大会在杭州未来科技城国际会议中心开幕!会上,发布了未来科技城培育发展未来产业行动计划,启动了未来产业发展共同体,进行了未来产业公共服务平台签约仪式。未来科技城与加速科技签约共建集成电…

创建一个空的vue项目,配置及步骤

查看需要的环境及插件版本 创建vue命令 默认配置 手动配置 其他 hash和history的区别: hash 模式,url后,会带着#,改变hash,页面不会刷新,不会更改整个页面,只会更改#后面路由配置的内容&#x…

JVM类加载机制

自己编写的Java代码,是如何在各种各样的操作系统上运行起来的? Java文件通过javac编译成class文件,这种中间码被称为字节码,然后由jvm加载字节码,运行时解释器将字节码解释为一行行机器码来执行,在程序运行…

SQL Server 2019导入txt数据

1、选择导入数据 2、选择Flat file Source 选择文件,如果第一行不是列名,就不勾选。 3、下一步 可以看看数据是否是对的 4、下一步 选择SQL server Native Client 11,数据库选择导入进的库 输入连接数据库的名字和要导入的数据库 下一…

手敲视觉slam14讲 ch7 / pose_estimation_3d2d.cpp (1)

首先理清我们需要实现什么功能,怎么实现,提供一份整体逻辑:包括主函数和功能函数 主函数逻辑: 1. 读图,两张rgb(cv::imread) 2. 找到两张rgb图中的特征点匹配对 2.1定义所需要的参数:keypoints…

扎根嵌入式行业需要什么学历文凭?

在嵌入式行业,学历并不是唯一关键。我本人拥有电子工程学士学位,但嵌入式行业更看重实际技能和经验。视频后方有免费的嵌入式学习资料,入门和进阶内容都涵盖其中。嵌入式行业一般接纳各种学历,从专科到本科到研究生,甚…

在Ubuntu Linux系统上安装RabbitMQ服务并解决公网远程访问问题

文章目录 前言1.安装erlang 语言2.安装rabbitMQ3. 内网穿透3.1 安装cpolar内网穿透(支持一键自动安装脚本)3.2 创建HTTP隧道 4. 公网远程连接5.固定公网TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 RabbitMQ是一个在 AMQP(高级消息队列协议)基…

2023高教社杯数学建模思路 - 复盘:人力资源安排的最优化模型

文章目录 0 赛题思路1 描述2 问题概括3 建模过程3.1 边界说明3.2 符号约定3.3 分析3.4 模型建立3.5 模型求解 4 模型评价与推广5 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 描述 …

2023-8-31 Dijkstra求最短路(二)

题目链接&#xff1a;Dijkstra求最短路 II #include <iostream> #include <cstring> #include <algorithm> #include <vector> #include <queue>using namespace std;typedef pair<int, int> PII;const int N 150010;int n, m; int h[N…

el-upload调用内部方法删除文件

从Element UI 的官方文档中&#xff0c; Upload 上传组组件提供了on-remove和before-remove的文件删除的钩子属性&#xff08;回调方法名&#xff09;&#xff0c;但如何调用组件删除方法&#xff08;让该方法删除本地上传文件列表以及触发这两个钩子&#xff09;并无相关说明。…

Running transaction check,yum卡在这个地方不动了

问题&#xff1a;运行yum update卡在这个地方不动 解决办法&#xff1a;运行下面的命令 # /bin/rm /var/lib/rpm/__db.* # cd /var/cache/yum # /bin/rm -rf * # yum clean all # yum update如果运行还不成功&#xff0c;那么重启服务器试试。我的服务器用了各种办法不行&…

【Python自学笔记】Python好用的模块收集(持续更新...)

文章目录 日志模块钉钉机器人命令助手持续更新中,如果您有其他实用好用的模块欢迎留言...日志模块 写代码离不开日志,自定义一个理想的日志对于小白来说可能是一件很反锁的事情,就像我刚学习Python的时候自己写的一个自定义日志,为了解决这个痛点,今天就和大家分享一个可以…

如何在小红书进行学习直播

诸神缄默不语-个人CSDN博文目录 因为我是从B站开始的&#xff0c;所以一些直播常识型的东西请见我之前写的如何在B站进行学习直播这一篇。 本篇主要介绍一些小红书之与B站不同之处。 小红书在手机端是可以直接点击“”选择直播的。 文章目录 1. 电脑直播-小红书直播软件2. 电…

基于Java的代驾管理系统 springboot+vue,mysql数据库,前台用户、商户+后台管理员,有一万五千字报告,完美运行

基于Java的代驾管理系统 springbootvue&#xff0c;mysql数据库&#xff0c;前台用户、商户后台管理员&#xff0c;有一万五千字报告&#xff0c;完美运行。 系统完美实现用户下单叫车、商户接单、管理员管理系统&#xff0c;页面良好&#xff0c;系统流畅。 各角色功能&#x…

sql:SQL优化知识点记录(四)

&#xff08;1&#xff09;explain之ref介绍 type下的ref是非唯一性索引扫描具体的一个值 ref属性 例如&#xff1a;ti表先加载&#xff0c;const是常量 t1.other_column是个t1表常量 test.t1.ID&#xff1a;test库t1表的ID字段 t1表引用了shared库的t2表的col1字段&#x…