高速公路自动驾驶汽车超车控制方法研究

目录
摘要 ............................................................................................................ I
Abstract ...................................................................................................... II
目录 ......................................................................................................... IV
第1 章 引言 ........................................................................................... 1
1.1 研究背景及意义 .......................................................................................... 1
1.2 国内外研究现状 .......................................................................................... 2
1.3 自动驾驶汽车超车控制方法研究现状 ...................................................... 5
1.4 研究内容与技术路线 .................................................................................. 9
第2 章 自动驾驶汽车超车行为决策机制研究 ................................. 12
2.1 自动驾驶汽车基于高速公路环境的系统框架 ........................................ 12
2.2 自动驾驶超车行为决策框架 .................................................................... 14
2.3 基于有限状态机的超车行为建模 ............................................................ 16
2.4 本章小结 .................................................................................................... 19
第3 章 自动驾驶汽车超车轨迹规划 ................................................. 20
3.1 超车行为特性研究 .................................................................................... 20
3.2 自动驾驶汽车换道安全距离 .................................................................... 21
3.3 车辆换道运动轨迹规划 ............................................................................ 25
3.4 超车运动轨迹规划 .................................................................................... 34
3.5 本章小结 .................................................................................................... 37
第4 章 自动驾驶汽车换道超车轨迹跟踪 ......................................... 38
4.1 模型预测控制简介 .................................................................................... 38
4.2 自动驾驶汽车动力学模型建立 ................................................................ 40
4.3 基于模型预测控制的轨迹跟踪器设计 .................................................... 42
4.4 自动驾驶汽车轨迹跟踪仿真实验 ............................................................ 46
4.5 本章小结 .................................................................................................... 52
第5 章 自动驾驶汽车超车方法验证 ................................................. 53
5.1 自动驾驶汽车超车模型搭建 .................................................................... 53
5.2 超车结果分析 ............................................................................................ 56
5.3 本章小结 .................................................................................................... 59

第6 章 结论 ......................................................................................... 60
6.1 研究总结 .................................................................................................... 60
6.2 研究展望 .................................................................................................... 61
致谢 ......................................................................................................... 62
参考文献 ................................................................................................. 63
攻读学位期间获得与学位论文相关的科研成果 ................................. 67

第1 章 引言
1.1 研究背景及意义
汽车发展改变人的生活。自1885 年德国工程师卡尔奔驰发明第一辆汽油发动机汽车,1913 年美国福特公司大批量生产汽车,汽车业经历一个多世纪的发展,逐步形成如今的精细化生产——在模块化通用平台上实现跨车型跨级别规模生产,包括从车体架构到汽车功能模块划分、标准设计、个性化定制、柔性制造、灵活组装和敏捷生产。汽车制造业的核心竞争力从19 世纪的底盘、轮胎、机械、传动、车身,发展到20 世纪的发动机、能源排放、电气、被动安全,到如今的模块化、汽车电子、主动安全、智能驾驶。在互联网、人工智能等产业飞速发展的背景下,电子信息技术正在挑战脱离驾驶员驾驶汽车的状态,自动驾驶汽车技术可减少安全事故、缓解驾驶员疲劳,可望改变整个汽车工业和改善交通状况。
国内外科研机构早在上世纪就开始了自动驾驶技术的研究。从20 世纪70 年代开始,美国、英国、德国等发达国家开始进行自动驾驶研发。近年来,各大企业争相参与自动驾驶技术的研究,并陆续开展了路测试验,推动自动驾驶技术迅猛发展。我国自动驾驶技术研发稍晚,1992 年国防科技大学成功研制出中国第一辆真正意义上的无人自动驾驶汽车,2005 年上海交通大学成功研制首辆城市自动驾驶汽车。
自动驾驶汽车技术涉及人工智能、车辆工程、自动控制、机器视觉等多学科交叉研究。其利用摄像头、雷达、导航系统等多传感器感知车辆所处交通环境,自动规划出一条安全可靠的行驶轨迹,实现自动驾驶汽车在道路上自主行驶。超车是一种常见的驾驶行为,是指在同一车道上,后车为最求更快的行驶速度、更大的行驶空间及更短的行驶时间,从前车侧向超越前车并回到本车道的行为。超车作为一种比较复杂的驾驶行为,存在巨大的安全隐患。自动驾驶汽车超车技术通过采集与分析大量数据,包括车辆行车速度、位置、周围环境等,能更好替代驾驶员进行更为安全的超车决策与控制,以减少车辆超车过程中发生交通事故的风险,也能同时兼顾车辆平顺性,给乘客更舒适的超车体验。自动驾驶汽车超车技术研究在实现无人驾驶这一目标的过程中不可或缺,具有重要意义。

1.2 国内外研究现状
1.2.1 国外自动驾驶汽车研究现状
20 世纪80 年代,卡内基·梅隆大学、斯坦福大学、麻省理工学院等美国著名大学与一些科研机构开始自动驾驶汽车的研究。1984 年,美国国防研究计划局(The Defense Advanced Research Project Agency, DARPA)发布“星球大战”战略计划,旨在将超级计算机技术与人工智能技术应用于军事之中,图1-1 为三届DARPA 挑战赛冠军车辆,分别是Sandstorm、Stanley、Boss。同时期,美国交通部(United States Department of Transportation)成立了自动高速公路系统计划(AHS, Automated Highway System),该项目参与者有美国通用公司、伯克利大学与卡耐基梅隆大学。

作为AHS 计划的主要参与者,卡耐基梅隆大学研制出NavLab 系列车辆,图1-2 为NavLab-5 自动驾驶汽车。1995 年智能汽车NavLab-5 完成从匹兹堡到圣地亚哥4585 公里的智能驾驶路测,试验过程中,车辆自主控制方向盘约占总里程98.2%。1987 年,欧洲发起普罗米修斯项目(PROMETHEUS, Programme fora European Traffic of Highest Efficiency and Unprecedented Safety)。该项目由著名大学慕尼黑联邦防军大学、著名企业宝马、奔驰为主要参与者,该项目组于1994年研发智能驾驶汽车VaMP 和VITA-2,并混入高速公路正常车流中行驶,车辆最高时速达130km/h,试验过程中演示了巡线、编队、跟踪、换道超车行驶等项目。相较NavLab-5 加入了方向盘、油门、刹车协同控制。1996 年,意大利帕尔马大学视觉实验室创建ARGO 项目组,该项目逐一利用计算机视觉识别车道标线,进而控制车辆行驶。图1-3 为ARGO 自动驾驶汽车。2010 年,ARGO 试验车沿马可波罗路线,自动驾驶到中国参加上海世博会,总行程15926 公里。 

1.2.2 国内自动驾驶汽车研究现状
国内最早开始自动驾驶汽车领域研究的是高等院校。高等院校一方面积极与汽车企业合作,理清从实验室走向产品产业化的实现路径,另一方面在院校内部进行相关技术与产品的孵化。
20 世纪80 年代末,中国各大著名高校,其中包括国防科技大学、清华大学等联合研制出我国第一辆自动驾驶车辆ATB-1(Autonomous Test Bed)。20 世纪90 年代中期,清华大学成立智能汽车研发团队。清华大学李克强教授提出智能汽车发展正往智能化与网联化两个方向发展,前者通过车辆配置传感器感知外部环境,完成“孤岛式”自动驾驶,后者通过车车通信,基础设施信息交换,实
现网联下自动驾驶。两个发展方向都以解放人类双手为最终目标,且最终相互结合成为“智能网联汽车”。智能汽车研发团队与企业合作过程中,主要负责提供系统、基础算法框架,并围绕框架的具体细节与实际行车环境考虑优化。同济大学和上汽集团牵头成立智能型新能源汽车协同创新中心,致力于帮助可以项目产品化。同济大学针对上汽集团的产品规划与行业趋势做探索性基础研究,上汽集团前瞻部则致力于技术产品化。对于智能网联汽车这个跨学科系统工程,协同创新中心将各个学院师生,包括汽车学院、软件学院、电信学院、交通学院、测绘学院,发挥各自优势协同完成项目。2003 年,国防科技大学与一汽集团共同研发红旗CA7460 智能驾驶车辆,在功能上实现自动超车,2006 年研发的第二代智能驾驶汽车HQ3具备自适应巡航、碰撞预警、车道线跟踪等技术,控制精度和稳定性都较第一代有所提高。
中国本土汽车企业响应国家号召,开始参与自动驾驶技术研发。2018 年4月,奇瑞发布“雄狮LION”智能化品牌,该品牌是“124”战略的升级,涉及研发、制造、产品、营销、服务等方面,包括自动驾驶、智能互联、智慧制造、数字营销、移动出行这五个基本点,企图分四个阶段完成完全自动驾驶:2006 年Level1 驾驶辅助、2018 年Level 2 级部分自动驾驶、2020 年Level 3 级有条件自动驾
驶、2025 年Level 4/Level 5 级全自动驾驶。上汽集团在“十三五”规划提出技术“新四化”:电动化、网络化、智能化和共享化,且逐渐形成智能网联汽车自主研发体系,为未来产品业务拓展奠定基础。2015 年,上汽表示将在五年内实现结构化与部分非机构道路自动驾驶,10 年内实现全环境自动驾驶。其自动驾驶技术基于Level 3 级智能车为起点,围绕车辆智能化,多车协作两个主线推进技术发展。2016 年,长安汽车制定“654 战略”,针对智能化板块搭建六大平台(电子电器平台、环境感知与执行平台、决策平台、软件平台、环境测试平台、标准法规平台)、五大核心技术(自动泊车技术、自适应巡航技术、智能网络技术、HMI交互技术)和四阶段实现无人驾驶。

百度公司作为互联网公司,也对智能汽车进行了系统研究,其涉及领域有车联网、高精度地图及自动驾驶软件与算法的开发。百度对智能汽车的研究分为车联网和自动驾驶两个分支。2017 年,百度公司独立出自动驾驶事业部(Level 4),并宣布自动驾驶商业化开源的“Apollo 计划”。

1.3 自动驾驶汽车超车控制方法研究现状
车辆超车是一种常见的驾驶行为,指后方车辆为寻求更快的驾驶速度和更大的驾驶空间,超越前车的驾驶行为。自动驾驶汽车超车是根据周围环境,判断是否符合超车条件,合理规划超车轨迹,然后根据车辆当前姿态、车速信息决策,输出方向盘转角信号,完成超车行为。超车过程涉及换道超车决策、换道超车轨迹规划、换道超车轨迹跟踪等任务。
1.3.1 换道超车行为决策研究现状
早期国内外对驾驶行为决策的研究多停留在仿真阶段,采用的行为逻辑模仿真实的驾驶员驾驶行为习惯。Gipps 是最早对汽车换道行为进行系统研究的,他提出的换道决策模型基于受障碍物、交通指示、重型车辆影响的城郊道路,将决策过程分为换道意图产生、换道条件判断、换道动作执行三个部分,为降低模型复杂度,采用分层决策,使决策符合多方面要求[2]。Hidas 在Gipps 提出的模
型上进行改进,提出SITRAS(Simulation of intelligent Transport Systems)模型,提出间距评估模型,判断换道可行性时基于当前车辆的前后车加减速度是否为可接受,避免本车换道行为对其他交通车产生不利影响[3]。Q.Yang 基于Gipps 的模型框架,提出MITSIM(Microscopic Traffic SIMulator)模型,也是第一个根据环境不同将换道行为分为强制性换道与非强制换道两种,其中对非强制性换道的换道意图产生加入期望车速这一指标。美国联邦公路局提出CORSIM 换道模型,采用两个微观仿真模型,用于不同类型道路,分别是适用于高速道路环境的FRESIM 模型与适用于城市道路环境的NETSIM 模型。FRESIM 模型由动机因素、利益因素和紧急因素组成,NETSIM 模型分为强制性与非强制性两个换道情况,这两个模型建立基于减速度来判断换道时机。

上述模型多将环境简化,并默认所有微观环境信息是可知的,不符合实际情况。且以上模型仅一次考虑驾驶意图,将换道超车行为看做连续动作,未考虑超车行为第二次换道时周围环境是否符合条件。因此,若要构建能应用于自动驾驶汽车的模型,需要更深入的研究。Schubert 等将减速时间作为换道过程决策指标,采用贝叶斯网络评估换道场景和进行换道决策。Wei 等采用预测模型分析动态行车环境,进而辅助车辆在高速公路上完成车道保持或车辆超车等驾驶行为决策,模型采用车辆行驶安全性、舒适性、效率性作为评价指标,且使用成本函数作决策依据,然后用马尔科夫方法提高车辆在不确定行车环境下的驾驶稳定性。Brechtel 等采用马尔科夫方法作为换道决策方法,决策条件采用相对距离、相对速度等可直接测量的物理量,但由于无法预估的系统测量误差,造成决策系统的不稳定性。企业研究方面,宝马基于高速公路研发的自动驾驶ConnectedDrive 项目,Ardelt 等人采用状态机区分不同驾驶行为,并进行分层决策,其中分层决策根据不同的驾驶子任务与驾驶环境定义状态转移条件。
在国内,许多科研机构也对自动驾驶汽车超车行为决策方面进行了深入研究。袁盛玥针对城市环境进行换道规则的研究[9]。Guo M 等基于可行驶区域划分,提出适用于自动驾驶汽车的决策模型,决策模型考虑了其他信息,包括信号灯、周围车辆、行人等[10]。徐优志等基于RBF 神经网络学习真实驾驶员的驾驶特性,得出超车意图产生与判断条件,并基于Prescan 和Matlab/Simulink 搭建仿真实验平台,验证超车决策框架的有效性[11]。

.....需要完整版材料私信

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/113929.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图转超图 Graph convert toHypergraph

图转超图 DHT 介绍那么它有啥用呢? 这个实在太好玩了,参考的这个论文: EHGNN 采用的方法叫 Dual Hypergraph Transformation (DHT),主要就是把一个 graph 转为 hypergraph DHT 介绍 如何将 graph 转 hypergraph 的呢&#xff1…

企业智能知识管理在线工具语雀、helplook、石墨文档、Baklib怎么样?

语雀、helplook、石墨文档和Baklib都是企业智能知识管理的在线工具,它们都提供了一系列功能来帮助企业管理和共享知识。下面我将对这些工具进行详细的介绍和评价。 语雀: 语雀是一款功能强大的在线知识管理工具,它提供了丰富的功能和优秀的…

如何检测勒索软件攻击

什么是勒索软件 勒索软件又称勒索病毒,是一种特殊的恶意软件,又被归类为“阻断访问式攻击”(denial-of-access attack),与其他病毒最大的不同在于攻击方法以及中毒方式。 攻击方法:攻击它采用技术手段限制…

unity 之 如何获取父物体与子物体

文章目录 获取父物体获取子物体 获取父物体 在Unity中,你可以使用Transform组件的属性来获取对象的父物体。以下是在C#脚本中如何获取父物体的示例代码: using UnityEngine;public class GetParentExample : MonoBehaviour {void Start(){// 获取当前物…

三、mycat分库分表

第五章 分库分表 一个数据库由很多表的构成,每个表对应着不同的业务,垂直切分是指按照业 务将表进行分类,分布到不同 的数据库上面,这样也就将数据或者说压力分担到不同 的库上面,如下图: 系统被切分成了&…

解决抖音semi-ui的Input无法获取到onChange事件

最近在使用semi-ui框架的Input实现一个上传文件功能时遇到了坑&#xff0c;就是无法获取到onChange事件&#xff0c;通过console查看只是拿到了一个文件名。但若是把<Input>换成原生的<input>&#xff0c;就可以正常获取到事件。仔细看了下官方文档&#xff0c;发现…

巨人互动|游戏出海游戏出海的趋势如何

随着全球游戏市场的不断扩大和消费者需求的多元化&#xff0c;游戏出海作为游戏行业的重要战略之一&#xff0c;正面临着新的发展趋势。本文小编将讲讲游戏出海的趋势&#xff0c;探讨一下未来游戏出海的发展方向与前景。 巨人互动|游戏出海&2023国内游戏厂商加快“出海”发…

高效利用隧道代理实现无阻塞数据采集

在当今信息时代&#xff0c;大量的有价值数据分散于各个网站和平台。然而&#xff0c;许多网站对爬虫程序进行限制或封禁&#xff0c;使得传统方式下的数据采集变得困难重重。本文将向您介绍如何通过使用隧道代理来解决这一问题&#xff0c;并帮助您成为一名高效、顺畅的数据采…

postgresql类型转换函数

postgresql类型转换函数 简介CAST 函数to_date 函数to_timestamp 函数to_char 函数to_number 函数隐式类型转换 简介 类型转换函数用于将数据从一种类型转换为另一种类型。 CAST 函数 CAST ( expr AS data_type )函数用于将 expr 转换为 data_type 数据类型&#xff1b;Post…

SpringBoot—日志

目录 日志使用日志日志级别设置日志级别设置分组指定日志文件路径日志切割归档使用第三方日志框架log4j2配置文件【分级存储】logback配置文件【分级存储】 实例代码 日志 使用日志 给controller添加日志信息 要给controller类上添加Slf4j注解&#xff0c;然后使用log.info(…

根据身高重建队列【贪心算法】

根据身高重建队列 假设有打乱顺序的一群人站成一个队列&#xff0c;数组 people 表示队列中一些人的属性&#xff08;不一定按顺序&#xff09;。每个 people[i] [hi, ki] 表示第 i 个人的身高为 hi &#xff0c;前面 正好 有 ki 个身高大于或等于 hi 的人。 请你重新构造并返…

公网中Linux系统下Redis使用注意事项以及被pnscan病毒攻击的经过

一次惨痛的教训&#xff1a;被pnscan病毒攻击的经过&#xff08;公网中Linux系统下Redis使用注意事项&#xff09; 0.案发情况pnscan病毒感染惨状&#xff1a;>>提示<< 1.案发原因2.排查过程简单排查之后&#xff0c;发现啥都做不了。先百度到了如下文章&#xff1…

卡尔曼滤波

第一章知识点回顾 表1变量符号对照表 1.1数学期望 数学期望表示为每次可能的结果乘上结果概率的总和。 1.1.1 数学期望的性质 假设常数为 C &#xff0c;随机变量 X 和 Y &#xff0c;则 1.2 方差&#xff08;variance&#xff09; 概率论中和统计中的方差反映单个&…

本地电脑搭建Plex私人影音云盘教程,内网穿透实现远程访问

文章目录 1.前言2. Plex网站搭建2.1 Plex下载和安装2.2 Plex网页测试2.3 cpolar的安装和注册 3. 本地网页发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语6 总结 1.前言 用手机或者平板电脑看视频&#xff0c;已经算是生活中稀松平常的场景了&#xff0c;特…

目标检测笔记(十二):如何通过界面化操作YOLOv5完成数据集的自动标注

文章目录 一、意义二、修改源码获取三、自动标注前期准备四、开始自动标注五、可视化标注效果六、XML转换TXT 一、意义 通过界面化操作YOLOv5完成数据集的自动标注的意义在于简化数据标注的流程&#xff0c;提高标注的效率和准确性。 传统的数据集标注通常需要手动绘制边界框…

C语言每日一练-------Day(9)

本专栏为c语言练习专栏&#xff0c;适合刚刚学完c语言的初学者。本专栏每天会不定时更新&#xff0c;通过每天练习&#xff0c;进一步对c语言的重难点知识进行更深入的学习。 今日练习题关键字&#xff1a;字符个数统计 多数元素 投票法 &#x1f493;博主csdn个人主页&#xf…

【Centos8_配置单节点伪分布式Spark环境】

安装centos8 jdk部署伪分布式spark环境 安装Centos8 环境下的JDK 下载jdk linux版本 下载链接&#xff1a; jdk-8u381-linux-x64.tar.gz 将该文件上传到Centos8 主机 部署配置jdk&#xff08;java8&#xff09; # 解压到指定路径 [lhangtigerkeen Downloads]$ sudo tar …

redis 应用 4: HyperLogLog

我们先思考一个常见的业务问题&#xff1a;如果你负责开发维护一个大型的网站&#xff0c;有一天老板找产品经理要网站每个网页每天的 UV 数据&#xff0c;然后让你来开发这个统计模块&#xff0c;你会如何实现&#xff1f; img 如果统计 PV 那非常好办&#xff0c;给每个网页一…

day-05 TCP半关闭 ----- DNS ----- 套接字的选项

一、优雅的断开套接字连接 之前套接字的断开都是单方面的。 &#xff08;一&#xff09;基于TCP的半关闭 Linux的close函数和windows的closesocket函数意味着完全断开连接。完全断开不仅不能发送数据&#xff0c;从而也不能接收数据。在某些情况下&#xff0c;通信双方的某一方…

『PyQt5-Qt Designer篇』| 06 Qt Designer中水平布局和垂直布局的使用

06 Qt Designer中水平布局和垂直布局的使用 1 水平布局1.1 按钮布局1.2 位置移动1.3 先布局再放按钮1.4 保存文件并调用2 垂直布局2.1 按钮布局2.2 保存并调用1 水平布局 1.1 按钮布局 拖动几个按钮: 选中这几个按钮,右键-布局-水平布局: 可以看到按钮间隔等宽水平排列: 也…