13 尺寸结构模块(size.rs)

一、size.rs源码

// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.use super::UnknownUnit;
use crate::approxord::{max, min};
use crate::length::Length;
use crate::num::*;
use crate::scale::Scale;
use crate::vector::{vec2, BoolVector2D, Vector2D};
use crate::vector::{vec3, BoolVector3D, Vector3D};use core::cmp::{Eq, PartialEq};
use core::fmt;
use core::hash::Hash;
use core::iter::Sum;
use core::marker::PhantomData;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};
#[cfg(feature = "mint")]
use mint;
use num_traits::{Float, NumCast, Signed};
#[cfg(feature = "serde")]
use serde;/// A 2d size tagged with a unit.
#[repr(C)]
pub struct Size2D<T, U> {/// The extent of the element in the `U` units along the `x` axis (usually horizontal).pub width: T,/// The extent of the element in the `U` units along the `y` axis (usually vertical).pub height: T,#[doc(hidden)]pub _unit: PhantomData<U>,
}impl<T: Copy, U> Copy for Size2D<T, U> {}impl<T: Clone, U> Clone for Size2D<T, U> {fn clone(&self) -> Self {Size2D {width: self.width.clone(),height: self.height.clone(),_unit: PhantomData,}}
}#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Size2D<T, U>
whereT: serde::Deserialize<'de>,
{/// Deserializes 2d size from tuple of width and height.fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>whereD: serde::Deserializer<'de>,{let (width, height) = serde::Deserialize::deserialize(deserializer)?;Ok(Size2D {width,height,_unit: PhantomData,})}
}#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Size2D<T, U>
whereT: serde::Serialize,
{/// Serializes 2d size to tuple of width and height.fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>whereS: serde::Serializer,{(&self.width, &self.height).serialize(serializer)}
}#[cfg(feature = "arbitrary")]
impl<'a, T, U> arbitrary::Arbitrary<'a> for Size2D<T, U>
whereT: arbitrary::Arbitrary<'a>,
{fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {let (width, height) = arbitrary::Arbitrary::arbitrary(u)?;Ok(Size2D {width,height,_unit: PhantomData,})}
}#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, U> Zeroable for Size2D<T, U> {}#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, U: 'static> Pod for Size2D<T, U> {}impl<T, U> Eq for Size2D<T, U> where T: Eq {}impl<T, U> PartialEq for Size2D<T, U>
whereT: PartialEq,
{fn eq(&self, other: &Self) -> bool {self.width == other.width && self.height == other.height}
}impl<T, U> Hash for Size2D<T, U>
whereT: Hash,
{fn hash<H: core::hash::Hasher>(&self, h: &mut H) {self.width.hash(h);self.height.hash(h);}
}impl<T: fmt::Debug, U> fmt::Debug for Size2D<T, U> {fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {fmt::Debug::fmt(&self.width, f)?;write!(f, "x")?;fmt::Debug::fmt(&self.height, f)}
}impl<T: Default, U> Default for Size2D<T, U> {fn default() -> Self {Size2D::new(Default::default(), Default::default())}
}impl<T, U> Size2D<T, U> {/// The same as [`Zero::zero`] but available without importing trait.////// [`Zero::zero`]: crate::num::Zero::zero#[inline]pub fn zero() -> SelfwhereT: Zero,{Size2D::new(Zero::zero(), Zero::zero())}/// Constructor taking scalar values.#[inline]pub const fn new(width: T, height: T) -> Self {Size2D {width,height,_unit: PhantomData,}}/// Constructor taking scalar strongly typed lengths.#[inline]pub fn from_lengths(width: Length<T, U>, height: Length<T, U>) -> Self {Size2D::new(width.0, height.0)}/// Constructor setting all components to the same value.#[inline]pub fn splat(v: T) -> SelfwhereT: Clone,{Size2D {width: v.clone(),height: v,_unit: PhantomData,}}/// Tag a unitless value with units.#[inline]pub fn from_untyped(p: Size2D<T, UnknownUnit>) -> Self {Size2D::new(p.width, p.height)}
}impl<T: Copy, U> Size2D<T, U> {/// Return this size as an array of two elements (width, then height).#[inline]pub fn to_array(self) -> [T; 2] {[self.width, self.height]}/// Return this size as a tuple of two elements (width, then height).#[inline]pub fn to_tuple(self) -> (T, T) {(self.width, self.height)}/// Return this size as a vector with width and height.#[inline]pub fn to_vector(self) -> Vector2D<T, U> {vec2(self.width, self.height)}/// Drop the units, preserving only the numeric value.#[inline]pub fn to_untyped(self) -> Size2D<T, UnknownUnit> {self.cast_unit()}/// Cast the unit#[inline]pub fn cast_unit<V>(self) -> Size2D<T, V> {Size2D::new(self.width, self.height)}/// Rounds each component to the nearest integer value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::size2;/// enum Mm {}////// assert_eq!(size2::<_, Mm>(-0.1, -0.8).round(), size2::<_, Mm>(0.0, -1.0))/// ```#[inline]#[must_use]pub fn round(self) -> SelfwhereT: Round,{Size2D::new(self.width.round(), self.height.round())}/// Rounds each component to the smallest integer equal or greater than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::size2;/// enum Mm {}////// assert_eq!(size2::<_, Mm>(-0.1, -0.8).ceil(), size2::<_, Mm>(0.0, 0.0))/// ```#[inline]#[must_use]pub fn ceil(self) -> SelfwhereT: Ceil,{Size2D::new(self.width.ceil(), self.height.ceil())}/// Rounds each component to the biggest integer equal or lower than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::size2;/// enum Mm {}////// assert_eq!(size2::<_, Mm>(-0.1, -0.8).floor(), size2::<_, Mm>(-1.0, -1.0))/// ```#[inline]#[must_use]pub fn floor(self) -> SelfwhereT: Floor,{Size2D::new(self.width.floor(), self.height.floor())}/// Returns result of multiplication of both componentspub fn area(self) -> T::OutputwhereT: Mul,{self.width * self.height}/// Linearly interpolate each component between this size and another size.////// # Example////// ```rust/// use euclid::size2;/// use euclid::default::Size2D;////// let from: Size2D<_> = size2(0.0, 10.0);/// let to:  Size2D<_> = size2(8.0, -4.0);////// assert_eq!(from.lerp(to, -1.0), size2(-8.0,  24.0));/// assert_eq!(from.lerp(to,  0.0), size2( 0.0,  10.0));/// assert_eq!(from.lerp(to,  0.5), size2( 4.0,   3.0));/// assert_eq!(from.lerp(to,  1.0), size2( 8.0,  -4.0));/// assert_eq!(from.lerp(to,  2.0), size2(16.0, -18.0));/// ```#[inline]pub fn lerp(self, other: Self, t: T) -> SelfwhereT: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>,{let one_t = T::one() - t;self * one_t + other * t}
}impl<T: NumCast + Copy, U> Size2D<T, U> {/// Cast from one numeric representation to another, preserving the units.////// When casting from floating point to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.#[inline]pub fn cast<NewT: NumCast>(self) -> Size2D<NewT, U> {self.try_cast().unwrap()}/// Fallible cast from one numeric representation to another, preserving the units.////// When casting from floating point to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.pub fn try_cast<NewT: NumCast>(self) -> Option<Size2D<NewT, U>> {match (NumCast::from(self.width), NumCast::from(self.height)) {(Some(w), Some(h)) => Some(Size2D::new(w, h)),_ => None,}}// Convenience functions for common casts/// Cast into an `f32` size.#[inline]pub fn to_f32(self) -> Size2D<f32, U> {self.cast()}/// Cast into an `f64` size.#[inline]pub fn to_f64(self) -> Size2D<f64, U> {self.cast()}/// Cast into an `uint` size, truncating decimals if any.////// When casting from floating point sizes, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_usize(self) -> Size2D<usize, U> {self.cast()}/// Cast into an `u32` size, truncating decimals if any.////// When casting from floating point sizes, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_u32(self) -> Size2D<u32, U> {self.cast()}/// Cast into an `u64` size, truncating decimals if any.////// When casting from floating point sizes, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_u64(self) -> Size2D<u64, U> {self.cast()}/// Cast into an `i32` size, truncating decimals if any.////// When casting from floating point sizes, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i32(self) -> Size2D<i32, U> {self.cast()}/// Cast into an `i64` size, truncating decimals if any.////// When casting from floating point sizes, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i64(self) -> Size2D<i64, U> {self.cast()}
}impl<T: Float, U> Size2D<T, U> {/// Returns `true` if all members are finite.#[inline]pub fn is_finite(self) -> bool {self.width.is_finite() && self.height.is_finite()}
}impl<T: Signed, U> Size2D<T, U> {/// Computes the absolute value of each component.////// For `f32` and `f64`, `NaN` will be returned for component if the component is `NaN`.////// For signed integers, `::MIN` will be returned for component if the component is `::MIN`.pub fn abs(self) -> Self {size2(self.width.abs(), self.height.abs())}/// Returns `true` if both components is positive and `false` any component is zero or negative.pub fn is_positive(self) -> bool {self.width.is_positive() && self.height.is_positive()}
}impl<T: PartialOrd, U> Size2D<T, U> {/// Returns the size each component of which are minimum of this size and another.#[inline]pub fn min(self, other: Self) -> Self {size2(min(self.width, other.width), min(self.height, other.height))}/// Returns the size each component of which are maximum of this size and another.#[inline]pub fn max(self, other: Self) -> Self {size2(max(self.width, other.width), max(self.height, other.height))}/// Returns the size each component of which clamped by corresponding/// components of `start` and `end`.////// Shortcut for `self.max(start).min(end)`.#[inline]pub fn clamp(self, start: Self, end: Self) -> SelfwhereT: Copy,{self.max(start).min(end)}// Returns true if this size is larger or equal to the other size in all dimensions.#[inline]pub fn contains(self, other: Self) -> bool {self.width >= other.width && self.height >= other.height}/// Returns vector with results of "greater then" operation on each component.pub fn greater_than(self, other: Self) -> BoolVector2D {BoolVector2D {x: self.width > other.width,y: self.height > other.height,}}/// Returns vector with results of "lower then" operation on each component.pub fn lower_than(self, other: Self) -> BoolVector2D {BoolVector2D {x: self.width < other.width,y: self.height < other.height,}}/// Returns `true` if any component of size is zero, negative, or NaN.pub fn is_empty(self) -> boolwhereT: Zero,{let zero = T::zero();// The condition is expressed this way so that we return true in// the presence of NaN.!(self.width > zero && self.height > zero)}
}impl<T: PartialEq, U> Size2D<T, U> {/// Returns vector with results of "equal" operation on each component.pub fn equal(self, other: Self) -> BoolVector2D {BoolVector2D {x: self.width == other.width,y: self.height == other.height,}}/// Returns vector with results of "not equal" operation on each component.pub fn not_equal(self, other: Self) -> BoolVector2D {BoolVector2D {x: self.width != other.width,y: self.height != other.height,}}
}impl<T: Round, U> Round for Size2D<T, U> {/// See [`Size2D::round`].#[inline]fn round(self) -> Self {self.round()}
}impl<T: Ceil, U> Ceil for Size2D<T, U> {/// See [`Size2D::ceil`].#[inline]fn ceil(self) -> Self {self.ceil()}
}impl<T: Floor, U> Floor for Size2D<T, U> {/// See [`Size2D::floor`].#[inline]fn floor(self) -> Self {self.floor()}
}impl<T: Zero, U> Zero for Size2D<T, U> {#[inline]fn zero() -> Self {Size2D::new(Zero::zero(), Zero::zero())}
}impl<T: Neg, U> Neg for Size2D<T, U> {type Output = Size2D<T::Output, U>;#[inline]fn neg(self) -> Self::Output {Size2D::new(-self.width, -self.height)}
}impl<T: Add, U> Add for Size2D<T, U> {type Output = Size2D<T::Output, U>;#[inline]fn add(self, other: Self) -> Self::Output {Size2D::new(self.width + other.width, self.height + other.height)}
}impl<T: Copy + Add<T, Output = T>, U> Add<&Self> for Size2D<T, U> {type Output = Self;fn add(self, other: &Self) -> Self {Size2D::new(self.width + other.width, self.height + other.height)}
}impl<T: Add<Output = T> + Zero, U> Sum for Size2D<T, U> {fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {iter.fold(Self::zero(), Add::add)}
}impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Size2D<T, U> {fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {iter.fold(Self::zero(), Add::add)}
}impl<T: AddAssign, U> AddAssign for Size2D<T, U> {#[inline]fn add_assign(&mut self, other: Self) {self.width += other.width;self.height += other.height;}
}impl<T: Sub, U> Sub for Size2D<T, U> {type Output = Size2D<T::Output, U>;#[inline]fn sub(self, other: Self) -> Self::Output {Size2D::new(self.width - other.width, self.height - other.height)}
}impl<T: SubAssign, U> SubAssign for Size2D<T, U> {#[inline]fn sub_assign(&mut self, other: Self) {self.width -= other.width;self.height -= other.height;}
}impl<T: Copy + Mul, U> Mul<T> for Size2D<T, U> {type Output = Size2D<T::Output, U>;#[inline]fn mul(self, scale: T) -> Self::Output {Size2D::new(self.width * scale, self.height * scale)}
}impl<T: Copy + MulAssign, U> MulAssign<T> for Size2D<T, U> {#[inline]fn mul_assign(&mut self, other: T) {self.width *= other;self.height *= other;}
}impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Size2D<T, U1> {type Output = Size2D<T::Output, U2>;#[inline]fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {Size2D::new(self.width * scale.0, self.height * scale.0)}
}impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Size2D<T, U> {#[inline]fn mul_assign(&mut self, other: Scale<T, U, U>) {*self *= other.0;}
}impl<T: Copy + Div, U> Div<T> for Size2D<T, U> {type Output = Size2D<T::Output, U>;#[inline]fn div(self, scale: T) -> Self::Output {Size2D::new(self.width / scale, self.height / scale)}
}impl<T: Copy + DivAssign, U> DivAssign<T> for Size2D<T, U> {#[inline]fn div_assign(&mut self, other: T) {self.width /= other;self.height /= other;}
}impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Size2D<T, U2> {type Output = Size2D<T::Output, U1>;#[inline]fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {Size2D::new(self.width / scale.0, self.height / scale.0)}
}impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Size2D<T, U> {#[inline]fn div_assign(&mut self, other: Scale<T, U, U>) {*self /= other.0;}
}/// Shorthand for `Size2D::new(w, h)`.
#[inline]
pub const fn size2<T, U>(w: T, h: T) -> Size2D<T, U> {Size2D::new(w, h)
}#[cfg(feature = "mint")]
impl<T, U> From<mint::Vector2<T>> for Size2D<T, U> {#[inline]fn from(v: mint::Vector2<T>) -> Self {Size2D {width: v.x,height: v.y,_unit: PhantomData,}}
}
#[cfg(feature = "mint")]
impl<T, U> From<Size2D<T, U>> for mint::Vector2<T> {#[inline]fn from(s: Size2D<T, U>) -> Self {mint::Vector2 {x: s.width,y: s.height,}}
}impl<T, U> From<Vector2D<T, U>> for Size2D<T, U> {#[inline]fn from(v: Vector2D<T, U>) -> Self {size2(v.x, v.y)}
}impl<T, U> From<Size2D<T, U>> for [T; 2] {#[inline]fn from(s: Size2D<T, U>) -> Self {[s.width, s.height]}
}impl<T, U> From<[T; 2]> for Size2D<T, U> {#[inline]fn from([w, h]: [T; 2]) -> Self {size2(w, h)}
}impl<T, U> From<Size2D<T, U>> for (T, T) {#[inline]fn from(s: Size2D<T, U>) -> Self {(s.width, s.height)}
}impl<T, U> From<(T, T)> for Size2D<T, U> {#[inline]fn from(tuple: (T, T)) -> Self {size2(tuple.0, tuple.1)}
}#[cfg(test)]
mod size2d {use crate::default::Size2D;#[cfg(feature = "mint")]use mint;#[test]pub fn test_area() {let p = Size2D::new(1.5, 2.0);assert_eq!(p.area(), 3.0);}#[cfg(feature = "mint")]#[test]pub fn test_mint() {let s1 = Size2D::new(1.0, 2.0);let sm: mint::Vector2<_> = s1.into();let s2 = Size2D::from(sm);assert_eq!(s1, s2);}mod ops {use crate::default::Size2D;use crate::scale::Scale;pub enum Mm {}pub enum Cm {}pub type Size2DMm<T> = crate::Size2D<T, Mm>;pub type Size2DCm<T> = crate::Size2D<T, Cm>;#[test]pub fn test_neg() {assert_eq!(-Size2D::new(1.0, 2.0), Size2D::new(-1.0, -2.0));assert_eq!(-Size2D::new(0.0, 0.0), Size2D::new(-0.0, -0.0));assert_eq!(-Size2D::new(-1.0, -2.0), Size2D::new(1.0, 2.0));}#[test]pub fn test_add() {let s1 = Size2D::new(1.0, 2.0);let s2 = Size2D::new(3.0, 4.0);assert_eq!(s1 + s2, Size2D::new(4.0, 6.0));assert_eq!(s1 + &s2, Size2D::new(4.0, 6.0));let s1 = Size2D::new(1.0, 2.0);let s2 = Size2D::new(0.0, 0.0);assert_eq!(s1 + s2, Size2D::new(1.0, 2.0));assert_eq!(s1 + &s2, Size2D::new(1.0, 2.0));let s1 = Size2D::new(1.0, 2.0);let s2 = Size2D::new(-3.0, -4.0);assert_eq!(s1 + s2, Size2D::new(-2.0, -2.0));assert_eq!(s1 + &s2, Size2D::new(-2.0, -2.0));let s1 = Size2D::new(0.0, 0.0);let s2 = Size2D::new(0.0, 0.0);assert_eq!(s1 + s2, Size2D::new(0.0, 0.0));assert_eq!(s1 + &s2, Size2D::new(0.0, 0.0));}#[test]pub fn test_add_assign() {let mut s = Size2D::new(1.0, 2.0);s += Size2D::new(3.0, 4.0);assert_eq!(s, Size2D::new(4.0, 6.0));let mut s = Size2D::new(1.0, 2.0);s += Size2D::new(0.0, 0.0);assert_eq!(s, Size2D::new(1.0, 2.0));let mut s = Size2D::new(1.0, 2.0);s += Size2D::new(-3.0, -4.0);assert_eq!(s, Size2D::new(-2.0, -2.0));let mut s = Size2D::new(0.0, 0.0);s += Size2D::new(0.0, 0.0);assert_eq!(s, Size2D::new(0.0, 0.0));}#[test]pub fn test_sum() {let sizes = [Size2D::new(0.0, 1.0),Size2D::new(1.0, 2.0),Size2D::new(2.0, 3.0),];let sum = Size2D::new(3.0, 6.0);assert_eq!(sizes.iter().sum::<Size2D<_>>(), sum);}#[test]pub fn test_sub() {let s1 = Size2D::new(1.0, 2.0);let s2 = Size2D::new(3.0, 4.0);assert_eq!(s1 - s2, Size2D::new(-2.0, -2.0));let s1 = Size2D::new(1.0, 2.0);let s2 = Size2D::new(0.0, 0.0);assert_eq!(s1 - s2, Size2D::new(1.0, 2.0));let s1 = Size2D::new(1.0, 2.0);let s2 = Size2D::new(-3.0, -4.0);assert_eq!(s1 - s2, Size2D::new(4.0, 6.0));let s1 = Size2D::new(0.0, 0.0);let s2 = Size2D::new(0.0, 0.0);assert_eq!(s1 - s2, Size2D::new(0.0, 0.0));}#[test]pub fn test_sub_assign() {let mut s = Size2D::new(1.0, 2.0);s -= Size2D::new(3.0, 4.0);assert_eq!(s, Size2D::new(-2.0, -2.0));let mut s = Size2D::new(1.0, 2.0);s -= Size2D::new(0.0, 0.0);assert_eq!(s, Size2D::new(1.0, 2.0));let mut s = Size2D::new(1.0, 2.0);s -= Size2D::new(-3.0, -4.0);assert_eq!(s, Size2D::new(4.0, 6.0));let mut s = Size2D::new(0.0, 0.0);s -= Size2D::new(0.0, 0.0);assert_eq!(s, Size2D::new(0.0, 0.0));}#[test]pub fn test_mul_scalar() {let s1: Size2D<f32> = Size2D::new(3.0, 5.0);let result = s1 * 5.0;assert_eq!(result, Size2D::new(15.0, 25.0));}#[test]pub fn test_mul_assign_scalar() {let mut s1 = Size2D::new(3.0, 5.0);s1 *= 5.0;assert_eq!(s1, Size2D::new(15.0, 25.0));}#[test]pub fn test_mul_scale() {let s1 = Size2DMm::new(1.0, 2.0);let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);let result = s1 * cm_per_mm;assert_eq!(result, Size2DCm::new(0.1, 0.2));}#[test]pub fn test_mul_assign_scale() {let mut s1 = Size2DMm::new(1.0, 2.0);let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);s1 *= scale;assert_eq!(s1, Size2DMm::new(0.1, 0.2));}#[test]pub fn test_div_scalar() {let s1: Size2D<f32> = Size2D::new(15.0, 25.0);let result = s1 / 5.0;assert_eq!(result, Size2D::new(3.0, 5.0));}#[test]pub fn test_div_assign_scalar() {let mut s1: Size2D<f32> = Size2D::new(15.0, 25.0);s1 /= 5.0;assert_eq!(s1, Size2D::new(3.0, 5.0));}#[test]pub fn test_div_scale() {let s1 = Size2DCm::new(0.1, 0.2);let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);let result = s1 / cm_per_mm;assert_eq!(result, Size2DMm::new(1.0, 2.0));}#[test]pub fn test_div_assign_scale() {let mut s1 = Size2DMm::new(0.1, 0.2);let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);s1 /= scale;assert_eq!(s1, Size2DMm::new(1.0, 2.0));}#[test]pub fn test_nan_empty() {use std::f32::NAN;assert!(Size2D::new(NAN, 2.0).is_empty());assert!(Size2D::new(0.0, NAN).is_empty());assert!(Size2D::new(NAN, -2.0).is_empty());}}
}/// A 3d size tagged with a unit.
#[repr(C)]
pub struct Size3D<T, U> {/// The extent of the element in the `U` units along the `x` axis.pub width: T,/// The extent of the element in the `U` units along the `y` axis.pub height: T,/// The extent of the element in the `U` units along the `z` axis.pub depth: T,#[doc(hidden)]pub _unit: PhantomData<U>,
}impl<T: Copy, U> Copy for Size3D<T, U> {}impl<T: Clone, U> Clone for Size3D<T, U> {fn clone(&self) -> Self {Size3D {width: self.width.clone(),height: self.height.clone(),depth: self.depth.clone(),_unit: PhantomData,}}
}#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Size3D<T, U>
whereT: serde::Deserialize<'de>,
{fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>whereD: serde::Deserializer<'de>,{let (width, height, depth) = serde::Deserialize::deserialize(deserializer)?;Ok(Size3D {width,height,depth,_unit: PhantomData,})}
}#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Size3D<T, U>
whereT: serde::Serialize,
{fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>whereS: serde::Serializer,{(&self.width, &self.height, &self.depth).serialize(serializer)}
}#[cfg(feature = "arbitrary")]
impl<'a, T, U> arbitrary::Arbitrary<'a> for Size3D<T, U>
whereT: arbitrary::Arbitrary<'a>,
{fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {let (width, height, depth) = arbitrary::Arbitrary::arbitrary(u)?;Ok(Size3D {width,height,depth,_unit: PhantomData,})}
}#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, U> Zeroable for Size3D<T, U> {}#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, U: 'static> Pod for Size3D<T, U> {}impl<T, U> Eq for Size3D<T, U> where T: Eq {}impl<T, U> PartialEq for Size3D<T, U>
whereT: PartialEq,
{fn eq(&self, other: &Self) -> bool {self.width == other.width && self.height == other.height && self.depth == other.depth}
}impl<T, U> Hash for Size3D<T, U>
whereT: Hash,
{fn hash<H: core::hash::Hasher>(&self, h: &mut H) {self.width.hash(h);self.height.hash(h);self.depth.hash(h);}
}impl<T: fmt::Debug, U> fmt::Debug for Size3D<T, U> {fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {fmt::Debug::fmt(&self.width, f)?;write!(f, "x")?;fmt::Debug::fmt(&self.height, f)?;write!(f, "x")?;fmt::Debug::fmt(&self.depth, f)}
}impl<T: Default, U> Default for Size3D<T, U> {fn default() -> Self {Size3D::new(Default::default(), Default::default(), Default::default())}
}impl<T, U> Size3D<T, U> {/// The same as [`Zero::zero`] but available without importing trait.////// [`Zero::zero`]: crate::num::Zero::zeropub fn zero() -> SelfwhereT: Zero,{Size3D::new(Zero::zero(), Zero::zero(), Zero::zero())}/// Constructor taking scalar values.#[inline]pub const fn new(width: T, height: T, depth: T) -> Self {Size3D {width,height,depth,_unit: PhantomData,}}/// Constructor taking scalar strongly typed lengths.#[inline]pub fn from_lengths(width: Length<T, U>, height: Length<T, U>, depth: Length<T, U>) -> Self {Size3D::new(width.0, height.0, depth.0)}/// Constructor setting all components to the same value.#[inline]pub fn splat(v: T) -> SelfwhereT: Clone,{Size3D {width: v.clone(),height: v.clone(),depth: v,_unit: PhantomData,}}/// Tag a unitless value with units.#[inline]pub fn from_untyped(p: Size3D<T, UnknownUnit>) -> Self {Size3D::new(p.width, p.height, p.depth)}
}impl<T: Copy, U> Size3D<T, U> {/// Return this size as an array of three elements (width, then height, then depth).#[inline]pub fn to_array(self) -> [T; 3] {[self.width, self.height, self.depth]}/// Return this size as an array of three elements (width, then height, then depth).#[inline]pub fn to_tuple(self) -> (T, T, T) {(self.width, self.height, self.depth)}/// Return this size as a vector with width, height and depth.#[inline]pub fn to_vector(self) -> Vector3D<T, U> {vec3(self.width, self.height, self.depth)}/// Drop the units, preserving only the numeric value.#[inline]pub fn to_untyped(self) -> Size3D<T, UnknownUnit> {self.cast_unit()}/// Cast the unit#[inline]pub fn cast_unit<V>(self) -> Size3D<T, V> {Size3D::new(self.width, self.height, self.depth)}/// Rounds each component to the nearest integer value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::size3;/// enum Mm {}////// assert_eq!(size3::<_, Mm>(-0.1, -0.8, 0.4).round(), size3::<_, Mm>(0.0, -1.0, 0.0))/// ```#[inline]#[must_use]pub fn round(self) -> SelfwhereT: Round,{Size3D::new(self.width.round(), self.height.round(), self.depth.round())}/// Rounds each component to the smallest integer equal or greater than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::size3;/// enum Mm {}////// assert_eq!(size3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), size3::<_, Mm>(0.0, 0.0, 1.0))/// ```#[inline]#[must_use]pub fn ceil(self) -> SelfwhereT: Ceil,{Size3D::new(self.width.ceil(), self.height.ceil(), self.depth.ceil())}/// Rounds each component to the biggest integer equal or lower than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::size3;/// enum Mm {}////// assert_eq!(size3::<_, Mm>(-0.1, -0.8, 0.4).floor(), size3::<_, Mm>(-1.0, -1.0, 0.0))/// ```#[inline]#[must_use]pub fn floor(self) -> SelfwhereT: Floor,{Size3D::new(self.width.floor(), self.height.floor(), self.depth.floor())}/// Returns result of multiplication of all componentspub fn volume(self) -> TwhereT: Mul<Output = T>,{self.width * self.height * self.depth}/// Linearly interpolate between this size and another size.////// # Example////// ```rust/// use euclid::size3;/// use euclid::default::Size3D;////// let from: Size3D<_> = size3(0.0, 10.0, -1.0);/// let to:  Size3D<_> = size3(8.0, -4.0,  0.0);////// assert_eq!(from.lerp(to, -1.0), size3(-8.0,  24.0, -2.0));/// assert_eq!(from.lerp(to,  0.0), size3( 0.0,  10.0, -1.0));/// assert_eq!(from.lerp(to,  0.5), size3( 4.0,   3.0, -0.5));/// assert_eq!(from.lerp(to,  1.0), size3( 8.0,  -4.0,  0.0));/// assert_eq!(from.lerp(to,  2.0), size3(16.0, -18.0,  1.0));/// ```#[inline]pub fn lerp(self, other: Self, t: T) -> SelfwhereT: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>,{let one_t = T::one() - t;self * one_t + other * t}
}impl<T: NumCast + Copy, U> Size3D<T, U> {/// Cast from one numeric representation to another, preserving the units.////// When casting from floating point to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.#[inline]pub fn cast<NewT: NumCast>(self) -> Size3D<NewT, U> {self.try_cast().unwrap()}/// Fallible cast from one numeric representation to another, preserving the units.////// When casting from floating point to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.pub fn try_cast<NewT: NumCast>(self) -> Option<Size3D<NewT, U>> {match (NumCast::from(self.width),NumCast::from(self.height),NumCast::from(self.depth),) {(Some(w), Some(h), Some(d)) => Some(Size3D::new(w, h, d)),_ => None,}}// Convenience functions for common casts/// Cast into an `f32` size.#[inline]pub fn to_f32(self) -> Size3D<f32, U> {self.cast()}/// Cast into an `f64` size.#[inline]pub fn to_f64(self) -> Size3D<f64, U> {self.cast()}/// Cast into an `uint` size, truncating decimals if any.////// When casting from floating point sizes, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_usize(self) -> Size3D<usize, U> {self.cast()}/// Cast into an `u32` size, truncating decimals if any.////// When casting from floating point sizes, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_u32(self) -> Size3D<u32, U> {self.cast()}/// Cast into an `i32` size, truncating decimals if any.////// When casting from floating point sizes, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i32(self) -> Size3D<i32, U> {self.cast()}/// Cast into an `i64` size, truncating decimals if any.////// When casting from floating point sizes, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i64(self) -> Size3D<i64, U> {self.cast()}
}impl<T: Float, U> Size3D<T, U> {/// Returns `true` if all members are finite.#[inline]pub fn is_finite(self) -> bool {self.width.is_finite() && self.height.is_finite() && self.depth.is_finite()}
}impl<T: Signed, U> Size3D<T, U> {/// Computes the absolute value of each component.////// For `f32` and `f64`, `NaN` will be returned for component if the component is `NaN`.////// For signed integers, `::MIN` will be returned for component if the component is `::MIN`.pub fn abs(self) -> Self {size3(self.width.abs(), self.height.abs(), self.depth.abs())}/// Returns `true` if all components is positive and `false` any component is zero or negative.pub fn is_positive(self) -> bool {self.width.is_positive() && self.height.is_positive() && self.depth.is_positive()}
}impl<T: PartialOrd, U> Size3D<T, U> {/// Returns the size each component of which are minimum of this size and another.#[inline]pub fn min(self, other: Self) -> Self {size3(min(self.width, other.width),min(self.height, other.height),min(self.depth, other.depth),)}/// Returns the size each component of which are maximum of this size and another.#[inline]pub fn max(self, other: Self) -> Self {size3(max(self.width, other.width),max(self.height, other.height),max(self.depth, other.depth),)}/// Returns the size each component of which clamped by corresponding/// components of `start` and `end`.////// Shortcut for `self.max(start).min(end)`.#[inline]pub fn clamp(self, start: Self, end: Self) -> SelfwhereT: Copy,{self.max(start).min(end)}// Returns true if this size is larger or equal to the other size in all dimensions.#[inline]pub fn contains(self, other: Self) -> bool {self.width >= other.width && self.height >= other.height && self.depth >= other.depth}/// Returns vector with results of "greater than" operation on each component.pub fn greater_than(self, other: Self) -> BoolVector3D {BoolVector3D {x: self.width > other.width,y: self.height > other.height,z: self.depth > other.depth,}}/// Returns vector with results of "lower than" operation on each component.pub fn lower_than(self, other: Self) -> BoolVector3D {BoolVector3D {x: self.width < other.width,y: self.height < other.height,z: self.depth < other.depth,}}/// Returns `true` if any component of size is zero, negative or NaN.pub fn is_empty(self) -> boolwhereT: Zero,{let zero = T::zero();!(self.width > zero && self.height > zero && self.depth > zero)}
}impl<T: PartialEq, U> Size3D<T, U> {/// Returns vector with results of "equal" operation on each component.pub fn equal(self, other: Self) -> BoolVector3D {BoolVector3D {x: self.width == other.width,y: self.height == other.height,z: self.depth == other.depth,}}/// Returns vector with results of "not equal" operation on each component.pub fn not_equal(self, other: Self) -> BoolVector3D {BoolVector3D {x: self.width != other.width,y: self.height != other.height,z: self.depth != other.depth,}}
}impl<T: Round, U> Round for Size3D<T, U> {/// See [`Size3D::round`].#[inline]fn round(self) -> Self {self.round()}
}impl<T: Ceil, U> Ceil for Size3D<T, U> {/// See [`Size3D::ceil`].#[inline]fn ceil(self) -> Self {self.ceil()}
}impl<T: Floor, U> Floor for Size3D<T, U> {/// See [`Size3D::floor`].#[inline]fn floor(self) -> Self {self.floor()}
}impl<T: Zero, U> Zero for Size3D<T, U> {#[inline]fn zero() -> Self {Size3D::new(Zero::zero(), Zero::zero(), Zero::zero())}
}impl<T: Neg, U> Neg for Size3D<T, U> {type Output = Size3D<T::Output, U>;#[inline]fn neg(self) -> Self::Output {Size3D::new(-self.width, -self.height, -self.depth)}
}impl<T: Add, U> Add for Size3D<T, U> {type Output = Size3D<T::Output, U>;#[inline]fn add(self, other: Self) -> Self::Output {Size3D::new(self.width + other.width,self.height + other.height,self.depth + other.depth,)}
}impl<T: Copy + Add<T, Output = T>, U> Add<&Self> for Size3D<T, U> {type Output = Self;fn add(self, other: &Self) -> Self {Size3D::new(self.width + other.width,self.height + other.height,self.depth + other.depth,)}
}impl<T: Add<Output = T> + Zero, U> Sum for Size3D<T, U> {fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {iter.fold(Self::zero(), Add::add)}
}impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Size3D<T, U> {fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {iter.fold(Self::zero(), Add::add)}
}impl<T: AddAssign, U> AddAssign for Size3D<T, U> {#[inline]fn add_assign(&mut self, other: Self) {self.width += other.width;self.height += other.height;self.depth += other.depth;}
}impl<T: Sub, U> Sub for Size3D<T, U> {type Output = Size3D<T::Output, U>;#[inline]fn sub(self, other: Self) -> Self::Output {Size3D::new(self.width - other.width,self.height - other.height,self.depth - other.depth,)}
}impl<T: SubAssign, U> SubAssign for Size3D<T, U> {#[inline]fn sub_assign(&mut self, other: Self) {self.width -= other.width;self.height -= other.height;self.depth -= other.depth;}
}impl<T: Copy + Mul, U> Mul<T> for Size3D<T, U> {type Output = Size3D<T::Output, U>;#[inline]#[rustfmt::skip]fn mul(self, scale: T) -> Self::Output {Size3D::new(self.width * scale,self.height * scale,self.depth * scale,)}
}impl<T: Copy + MulAssign, U> MulAssign<T> for Size3D<T, U> {#[inline]fn mul_assign(&mut self, other: T) {self.width *= other;self.height *= other;self.depth *= other;}
}impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Size3D<T, U1> {type Output = Size3D<T::Output, U2>;#[inline]fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {Size3D::new(self.width * scale.0,self.height * scale.0,self.depth * scale.0,)}
}impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Size3D<T, U> {#[inline]fn mul_assign(&mut self, other: Scale<T, U, U>) {*self *= other.0;}
}impl<T: Copy + Div, U> Div<T> for Size3D<T, U> {type Output = Size3D<T::Output, U>;#[inline]#[rustfmt::skip]fn div(self, scale: T) -> Self::Output {Size3D::new(self.width / scale,self.height / scale,self.depth / scale,)}
}impl<T: Copy + DivAssign, U> DivAssign<T> for Size3D<T, U> {#[inline]fn div_assign(&mut self, other: T) {self.width /= other;self.height /= other;self.depth /= other;}
}impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Size3D<T, U2> {type Output = Size3D<T::Output, U1>;#[inline]fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {Size3D::new(self.width / scale.0,self.height / scale.0,self.depth / scale.0,)}
}impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Size3D<T, U> {#[inline]fn div_assign(&mut self, other: Scale<T, U, U>) {*self /= other.0;}
}#[cfg(feature = "mint")]
impl<T, U> From<mint::Vector3<T>> for Size3D<T, U> {#[inline]fn from(v: mint::Vector3<T>) -> Self {size3(v.x, v.y, v.z)}
}
#[cfg(feature = "mint")]
impl<T, U> From<Size3D<T, U>> for mint::Vector3<T> {#[inline]fn from(s: Size3D<T, U>) -> Self {mint::Vector3 {x: s.width,y: s.height,z: s.depth,}}
}impl<T, U> From<Vector3D<T, U>> for Size3D<T, U> {#[inline]fn from(v: Vector3D<T, U>) -> Self {size3(v.x, v.y, v.z)}
}impl<T, U> From<Size3D<T, U>> for [T; 3] {#[inline]fn from(s: Size3D<T, U>) -> Self {[s.width, s.height, s.depth]}
}impl<T, U> From<[T; 3]> for Size3D<T, U> {#[inline]fn from([w, h, d]: [T; 3]) -> Self {size3(w, h, d)}
}impl<T, U> From<Size3D<T, U>> for (T, T, T) {#[inline]fn from(s: Size3D<T, U>) -> Self {(s.width, s.height, s.depth)}
}impl<T, U> From<(T, T, T)> for Size3D<T, U> {#[inline]fn from(tuple: (T, T, T)) -> Self {size3(tuple.0, tuple.1, tuple.2)}
}/// Shorthand for `Size3D::new(w, h, d)`.
#[inline]
pub const fn size3<T, U>(w: T, h: T, d: T) -> Size3D<T, U> {Size3D::new(w, h, d)
}#[cfg(test)]
mod size3d {mod ops {use crate::default::{Size2D, Size3D};use crate::scale::Scale;pub enum Mm {}pub enum Cm {}pub type Size3DMm<T> = crate::Size3D<T, Mm>;pub type Size3DCm<T> = crate::Size3D<T, Cm>;#[test]pub fn test_neg() {assert_eq!(-Size3D::new(1.0, 2.0, 3.0), Size3D::new(-1.0, -2.0, -3.0));assert_eq!(-Size3D::new(0.0, 0.0, 0.0), Size3D::new(-0.0, -0.0, -0.0));assert_eq!(-Size3D::new(-1.0, -2.0, -3.0), Size3D::new(1.0, 2.0, 3.0));}#[test]pub fn test_add() {let s1 = Size3D::new(1.0, 2.0, 3.0);let s2 = Size3D::new(4.0, 5.0, 6.0);assert_eq!(s1 + s2, Size3D::new(5.0, 7.0, 9.0));assert_eq!(s1 + &s2, Size3D::new(5.0, 7.0, 9.0));let s1 = Size3D::new(1.0, 2.0, 3.0);let s2 = Size3D::new(0.0, 0.0, 0.0);assert_eq!(s1 + s2, Size3D::new(1.0, 2.0, 3.0));assert_eq!(s1 + &s2, Size3D::new(1.0, 2.0, 3.0));let s1 = Size3D::new(1.0, 2.0, 3.0);let s2 = Size3D::new(-4.0, -5.0, -6.0);assert_eq!(s1 + s2, Size3D::new(-3.0, -3.0, -3.0));assert_eq!(s1 + &s2, Size3D::new(-3.0, -3.0, -3.0));let s1 = Size3D::new(0.0, 0.0, 0.0);let s2 = Size3D::new(0.0, 0.0, 0.0);assert_eq!(s1 + s2, Size3D::new(0.0, 0.0, 0.0));assert_eq!(s1 + &s2, Size3D::new(0.0, 0.0, 0.0));}#[test]pub fn test_sum() {let sizes = [Size3D::new(0.0, 1.0, 2.0),Size3D::new(1.0, 2.0, 3.0),Size3D::new(2.0, 3.0, 4.0),];let sum = Size3D::new(3.0, 6.0, 9.0);assert_eq!(sizes.iter().sum::<Size3D<_>>(), sum);}#[test]pub fn test_add_assign() {let mut s = Size3D::new(1.0, 2.0, 3.0);s += Size3D::new(4.0, 5.0, 6.0);assert_eq!(s, Size3D::new(5.0, 7.0, 9.0));let mut s = Size3D::new(1.0, 2.0, 3.0);s += Size3D::new(0.0, 0.0, 0.0);assert_eq!(s, Size3D::new(1.0, 2.0, 3.0));let mut s = Size3D::new(1.0, 2.0, 3.0);s += Size3D::new(-4.0, -5.0, -6.0);assert_eq!(s, Size3D::new(-3.0, -3.0, -3.0));let mut s = Size3D::new(0.0, 0.0, 0.0);s += Size3D::new(0.0, 0.0, 0.0);assert_eq!(s, Size3D::new(0.0, 0.0, 0.0));}#[test]pub fn test_sub() {let s1 = Size3D::new(1.0, 2.0, 3.0);let s2 = Size3D::new(4.0, 5.0, 6.0);assert_eq!(s1 - s2, Size3D::new(-3.0, -3.0, -3.0));let s1 = Size3D::new(1.0, 2.0, 3.0);let s2 = Size3D::new(0.0, 0.0, 0.0);assert_eq!(s1 - s2, Size3D::new(1.0, 2.0, 3.0));let s1 = Size3D::new(1.0, 2.0, 3.0);let s2 = Size3D::new(-4.0, -5.0, -6.0);assert_eq!(s1 - s2, Size3D::new(5.0, 7.0, 9.0));let s1 = Size3D::new(0.0, 0.0, 0.0);let s2 = Size3D::new(0.0, 0.0, 0.0);assert_eq!(s1 - s2, Size3D::new(0.0, 0.0, 0.0));}#[test]pub fn test_sub_assign() {let mut s = Size3D::new(1.0, 2.0, 3.0);s -= Size3D::new(4.0, 5.0, 6.0);assert_eq!(s, Size3D::new(-3.0, -3.0, -3.0));let mut s = Size3D::new(1.0, 2.0, 3.0);s -= Size3D::new(0.0, 0.0, 0.0);assert_eq!(s, Size3D::new(1.0, 2.0, 3.0));let mut s = Size3D::new(1.0, 2.0, 3.0);s -= Size3D::new(-4.0, -5.0, -6.0);assert_eq!(s, Size3D::new(5.0, 7.0, 9.0));let mut s = Size3D::new(0.0, 0.0, 0.0);s -= Size3D::new(0.0, 0.0, 0.0);assert_eq!(s, Size3D::new(0.0, 0.0, 0.0));}#[test]pub fn test_mul_scalar() {let s1: Size3D<f32> = Size3D::new(3.0, 5.0, 7.0);let result = s1 * 5.0;assert_eq!(result, Size3D::new(15.0, 25.0, 35.0));}#[test]pub fn test_mul_assign_scalar() {let mut s1: Size3D<f32> = Size3D::new(3.0, 5.0, 7.0);s1 *= 5.0;assert_eq!(s1, Size3D::new(15.0, 25.0, 35.0));}#[test]pub fn test_mul_scale() {let s1 = Size3DMm::new(1.0, 2.0, 3.0);let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);let result = s1 * cm_per_mm;assert_eq!(result, Size3DCm::new(0.1, 0.2, 0.3));}#[test]pub fn test_mul_assign_scale() {let mut s1 = Size3DMm::new(1.0, 2.0, 3.0);let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);s1 *= scale;assert_eq!(s1, Size3DMm::new(0.1, 0.2, 0.3));}#[test]pub fn test_div_scalar() {let s1: Size3D<f32> = Size3D::new(15.0, 25.0, 35.0);let result = s1 / 5.0;assert_eq!(result, Size3D::new(3.0, 5.0, 7.0));}#[test]pub fn test_div_assign_scalar() {let mut s1: Size3D<f32> = Size3D::new(15.0, 25.0, 35.0);s1 /= 5.0;assert_eq!(s1, Size3D::new(3.0, 5.0, 7.0));}#[test]pub fn test_div_scale() {let s1 = Size3DCm::new(0.1, 0.2, 0.3);let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);let result = s1 / cm_per_mm;assert_eq!(result, Size3DMm::new(1.0, 2.0, 3.0));}#[test]pub fn test_div_assign_scale() {let mut s1 = Size3DMm::new(0.1, 0.2, 0.3);let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);s1 /= scale;assert_eq!(s1, Size3DMm::new(1.0, 2.0, 3.0));}#[test]fn test_nonempty() {assert!(!Size2D::new(1.0, 1.0).is_empty());assert!(!Size3D::new(1.0, 1.0, 1.0).is_empty());}#[test]pub fn test_nan_empty() {use std::f32::NAN;assert!(Size3D::new(NAN, 2.0, 3.0).is_empty());assert!(Size3D::new(0.0, NAN, 0.0).is_empty());assert!(Size3D::new(1.0, 2.0, NAN).is_empty());}}
}

二、说明

Size实现与Vector相似。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/11398.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【4Day创客实践入门教程】Day2 探秘微控制器——单片机与MicroPython初步

Day2 探秘微控制器——单片机与MicroPython初步 目录 Day2 探秘微控制器——单片机与MicroPython初步MicroPython语言基础开始基础语法注释与输出变量模块与函数 单片机基础后记 Day0 创想启程——课程与项目预览Day1 工具箱构建——开发环境的构建Day2 探秘微控制器——单片机…

ubuntu 下使用deepseek

安装Ollama sudo snap install ollama 执行 ollama run deepseek-coder 然后进行等待。。。

消息队列应用示例MessageQueues-STM32CubeMX-FreeRTOS《嵌入式系统设计》P343-P347

消息队列 使用信号量、事件标志组和线标志进行任务同步时&#xff0c;只能提供同步的时刻信息&#xff0c;无法在任务之间进行数据传输。要实现任务间的数据传输&#xff0c;一般使用两种方式&#xff1a; 1. 全局变量 在 RTOS 中使用全局变量时&#xff0c;必须保证每个任务…

本地缓存~

前言 Caffeine是使用Java8对Guava缓存的重写版本&#xff0c;在Spring Boot 2.0中取而代之&#xff0c;基于LRU算法实现&#xff0c;支持多种缓存过期策略。 以下摘抄于https://github.com/ben-manes/caffeine/wiki/Benchmarks-zh-CN 基准测试通过使用Java microbenchmark ha…

Unity Shader Graph 2D - 角色身体电流覆盖效果

在游戏中,通常会有游戏角色受到“电击”的效果,此时游戏角色身体上会覆盖有电流,该效果能表明游戏角色的当前状态,让玩家能够获得更直观更好的体验。 那么如何实现呢 首先创建一个ShaderGraph文件,命名为Current,再创建对应的材质球M_Current。 基础的资源显示 老规矩,…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.9 广播陷阱:形状不匹配的深层隐患

2.9 广播陷阱&#xff1a;形状不匹配的深层隐患 目录 #mermaid-svg-F0AgBChfSCGzOqa7 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-F0AgBChfSCGzOqa7 .error-icon{fill:#552222;}#mermaid-svg-F0AgBChfSCGzOqa7 …

解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩

解锁豆瓣高清海报(二): 使用 OpenCV 拼接和压缩 脚本地址: 项目地址: Gazer PixelWeaver.py pixel_squeezer_cv2.py 前瞻 继上一篇“解锁豆瓣高清海报(一) 深度爬虫与requests进阶之路”成功爬取豆瓣电影海报之后&#xff0c;本文将介绍如何使用 OpenCV 对这些海报进行智…

vue入门到实战 二

目录 2.1 计算属性computed 2.1.1什么是计算属性 2.1.2 只有getter方法的计算属性 2.1.3 定义有getter和setter方法的计算属性 2.1.4 计算属性和methods的对比 2.2 监听器属性watch 2.2.1 watch属性的用法 2.2.2 computed属性和watch属性的对比 2.1 计算属性computed…

【DeepSeek】本地快速搭建DeepSeek

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 博客内容主要围绕&#xff1a; 5G/6G协议讲解 高级C语言讲解 Rust语言讲解 文章目录 本地快速搭建DeepSeek一、安装及配置ollama二、DeepSeek模型…

Spring WebFlux揭秘:下一代响应式编程框架,与Spring MVC有何不同?

Spring WebFlux和Spring MVC都是Spring家族里的成员&#xff0c;它们都能帮助我们开发Web应用&#xff0c;但工作方式有所不同。 可以把Spring MVC想象成一个服务员&#xff0c;每次有客人&#xff08;请求&#xff09;来&#xff0c;它就会专门找一个服务员&#xff08;线程&a…

基于微信小程序的实习记录系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…

MySQL5.5升级到MySQL5.7

【卸载原来的MySQL】 cmd打开命令提示符窗口&#xff08;管理员身份&#xff09;net stop mysql&#xff08;先停止MySQL服务&#xff09; 3.卸载 切换到原来5.5版本的bin目录&#xff0c;输入mysqld remove卸载服务 测试mysql -V查看Mysql版本还是5.5 查看了环境变量里的…

TensorFlow 简单的二分类神经网络的训练和应用流程

展示了一个简单的二分类神经网络的训练和应用流程。主要步骤包括&#xff1a; 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与部署 加载和应用已训练的模型 1. 数据准备与预处理 在本例中&#xff0c;数据准备是通过两个 Numpy 数…

使用朴素贝叶斯对散点数据进行分类

本文将通过一个具体的例子&#xff0c;展示如何使用 Python 和 scikit-learn 库中的 GaussianNB 模型&#xff0c;对二维散点数据进行分类&#xff0c;并可视化分类结果。 1. 数据准备 假设我们有两个类别的二维散点数据&#xff0c;每个类别包含若干个点。我们将这些点分别存…

AI视频编码器(3.2) 《Swin Transformer V2: Scaling Up Capacity and Resolution》

arxiv链接自监督训练用到了SimMIM 论文链接。我觉得,SimMIM与MAE的区别在于,前者只是一个1-layer的prediction head,而后者是多层transformer结构的decoder。可参考Swin Transformer V2(CVPR 2022)论文与代码解读。总结 图中展示了三个创新,从左到右有三处红色结构,分别…

前端进阶:深度剖析预解析机制

一、预解析是什么&#xff1f; 在前端开发中&#xff0c;我们常常会遇到一些看似不符合常规逻辑的代码执行现象&#xff0c;比如为什么在变量声明之前访问它&#xff0c;得到的结果是undefined&#xff0c;而不是报错&#xff1f;为什么函数在声明之前就可以被调用&#xff1f…

Baklib赋能企业提升内容中台构建效率的全新路径解析

内容概要 在当今数字化转型的大潮中&#xff0c;企业面临着前所未有的挑战与机遇。为了顺应市场的发展趋势&#xff0c;提高运营能力&#xff0c;搭建高效的内容中台已成为企业迫在眉睫的任务。内容中台不仅仅是一个技术架构的集合&#xff0c;它更是企业实现数据共享、资源整…

计算机网络——流量控制

流量控制的基本方法是确保发送方不会以超过接收方处理能力的速度发送数据包。 通常的做法是接收方会向发送方提供某种反馈&#xff0c;如&#xff1a; &#xff08;1&#xff09;停止&等待 在任何时候只有一个数据包在传输&#xff0c;发送方发送一个数据包&#xff0c;…

游戏引擎 Unity - Unity 设置为简体中文、Unity 创建项目

Unity Unity 首次发布于 2005 年&#xff0c;属于 Unity Technologies Unity 使用的开发技术有&#xff1a;C# Unity 的适用平台&#xff1a;PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域&#xff1a;开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…

MySQL基础-多表查询

多表查询-多表关系 多表查询-概述 例如执行下行sql语句就会出现笛卡尔积&#xff1a; select *from emp,dept; --消除笛卡尔积 select * from emp,dept where emp.dept_id dept.id; 多表查询-查询分类 多表查询-连接查询-内连接 --内连接演示 --1.查询每一个员工的姓名,及关…