《OpenCV》——图像透视转换

图像透视转换简介

  • 在 OpenCV 里,图像透视转换属于重要的几何变换,也被叫做投影变换。下面从原理、实现步骤、相关函数和应用场景几个方面为你详细介绍。

原理

在这里插入图片描述

实现步骤

  • 选取对应点:要在源图像和目标图像上分别找出至少四个对应的点。这些对应点不能共线,因为它们是计算透视变换矩阵的关键依据。
  • 计算透视变换矩阵:利用 OpenCV 的 cv2.getPerspectiveTransform 函数,依据前面选取的对应点来计算透视变换矩阵。
  • 应用透视变换:使用 cv2.warpPerspective 函数,将计算得到的透视变换矩阵应用到源图像上,从而得到透视变换后的图像。

相关函数

  • cv2.getPerspectiveTransform
    • 功能:计算透视变换矩阵。
    • 语法:cv2.getPerspectiveTransform(src, dst)
    • 参数:
      • src:源图像中四个点的坐标,数据类型为 np.float32。
      • dst:目标图像中对应的四个点的坐标,数据类型为 np.float32。
  • 返回值:返回一个 3×3 的透视变换矩阵。
  • cv2.warpPerspective
    • 功能:对图像应用透视变换。
    • 语法:cv2.warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]])
    • 参数:
      • src:源图像。
      • M:透视变换矩阵。
      • dsize:输出图像的大小,格式为 (width, height)。
      • dst(可选):输出图像。
      • flags(可选):插值方法,如 cv2.INTER_LINEAR 等。
      • borderMode(可选):边界填充模式。
      • borderValue(可选):边界填充值。
  • 返回值:返回透视变换后的图像。

应用场景

  • 图像校正:校正因拍摄角度倾斜而产生畸变的图像,例如校正拍摄的文档图像,使其呈现为标准的矩形。
  • 虚拟现实:在虚拟现实场景中,将二维图像转换为具有透视效果的三维场景,增强沉浸感。
  • 自动驾驶:对车载摄像头拍摄的图像进行透视变换,以获取道路的鸟瞰图,辅助车辆进行路径规划和障碍物检测。

图像透视转换实例

对以下图片进行图像透视转换:
在这里插入图片描述

实例步骤

导入所需库

import numpy as np
import cv2

写入所需函数

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):# 初始化 dim 为 None,用于存储调整后的图像尺寸dim = None# 获取图像的高度和宽度(h, w) = image.shape[:2]# 如果宽度和高度都未指定,直接返回原图像if width is None and height is None:return image# 如果仅指定了高度,计算宽度的缩放比例if width is None:r = height / float(h)dim = (int(w * r), height)# 如果仅指定了宽度,计算高度的缩放比例else:r = width / float(w)dim = (width, int(h * r))# 使用 cv2.resize 函数根据 dim 和指定的插值方法对图像进行缩放resized = cv2.resize(image, dim, interpolation=inter)# 返回缩放后的图像return resized# 定义一个函数用于显示图像
# name: 显示窗口的名称
# img: 要显示的图像
def cv_show(name,img):# 使用cv2.imshow函数显示图像,第一个参数是窗口名称,第二个参数是要显示的图像cv2.imshow(name,img)# 使用cv2.waitKey(0)等待用户按键,参数为0表示无限等待cv2.waitKey(0)# 定义一个函数用于对输入的四个点进行排序
# pts: 输入的四个点的坐标,是一个形状为(4, 2)的numpy数组
def order_points(pts):# 创建一个形状为(4, 2)的全零数组,数据类型为float32,用于存储排序后的点rect = np.zeros((4,2),dtype="float32")# 计算每个点的x和y坐标之和s = pts.sum(axis=1)# 找到坐标和最小的点,这个点通常是左上角的点rect[0]=pts[np.argmin(s)]# 找到坐标和最大的点,这个点通常是右下角的点rect[2]=pts[np.argmax(s)]# 计算每个点的x和y坐标之差diff = np.diff(pts,axis=1)# 找到坐标差最小的点,这个点通常是右上角的点rect[1]=pts[np.argmin(diff)]# 找到坐标差最大的点,这个点通常是左下角的点rect[3]=pts[np.argmax(diff)]# 返回排序后的四个点return rect# 定义一个函数用于进行四点透视变换
# image: 输入的原始图像
# pts: 输入的四个点的坐标,是一个形状为(4, 2)的numpy数组
def four_point_transform(image,pts):# 调用order_points函数对输入的四个点进行排序rect = order_points(pts)# 解包排序后的四个点,分别赋值给左上角、右上角、右下角和左下角的点(tl,tr,br,bl) = rect# 计算新图像的宽度,通过计算右下角和左下角点之间的距离widthA = np.sqrt(((br[0]-bl[0])**2)+((br[1]-bl[1])**2))# 计算新图像的宽度,通过计算右上角和左上角点之间的距离widthB = np.sqrt(((tr[0]-tl[0])**2)+((tr[1]-tl[1])**2))# 取两个宽度中的最大值作为新图像的宽度maxWidth = max(int(widthA),int(widthB))# 计算新图像的高度,通过计算右上角和右下角点之间的距离heightA  = np.sqrt(((tr[0]-br[0])**2)+((tr[1]-br[1])**2))# 计算新图像的高度,通过计算左上角和左下角点之间的距离heightB  = np.sqrt(((tl[0]-bl[0])**2)+((tl[1]-bl[1])**2))# 取两个高度中的最大值作为新图像的高度maxHeight = max(int(heightA),int(heightB))# 创建一个形状为(4, 2)的numpy数组,用于存储变换后的四个点的坐标dst = np.array([[0,0],[maxWidth-1,0],[maxWidth-1,maxHeight-1],[0,maxHeight-1]],dtype="float32")# 使用cv2.getPerspectiveTransform函数计算透视变换矩阵M = cv2.getPerspectiveTransform(rect,dst)# 使用cv2.warpPerspective函数进行透视变换,得到变换后的图像warped = cv2.warpPerspective(image,M,(maxWidth,maxHeight))# 返回变换后的图像return warped

获取图片信息并处理图片

import cv2# 读取指定路径的图片,返回一个表示图像的多维数组
image = cv2.imread('dan_zi.jpg')
# 调用自定义的cv_show函数展示原始图像,窗口名为'image'
cv_show('image', image)# 计算原始图像高度与500像素的比例,后续用于恢复尺寸
ration = image.shape[0] / 500.0
# 复制原始图像,避免后续操作修改原始数据
orig = image.copy()
# 调用resize函数将图像高度调整为500像素,保持宽高比
image = resize(orig, height=500)
# 调用cv_show函数展示调整大小后的图像,窗口名为'1'
cv_show('1', image)# 打印提示信息,表明进入轮廓检测步骤
print("STEP 1: 轮廓检测")
# 将调整大小后的图像从BGR颜色空间转换为灰度颜色空间
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 运用Otsu's算法进行二值化处理,得到二值化后的图像
edged = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# 在二值化图像的副本上查找轮廓,使用RETR_LIST检索模式和CHAIN_APPROX_SIMPLE近似方法
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[-2]
# 在图像副本上绘制所有检测到的轮廓,颜色为红色,线条宽度为1像素
image_contours = cv2.drawContours(image.copy(), cnts, -1, (0, 0, 255), 1)
# 调用cv_show函数展示绘制了所有轮廓的图像,窗口名为'image_contours'
cv_show("image_contours", image_contours)# 打印提示信息,表明进入获取最大轮廓步骤
print("STEP 2:获取最大轮廓")
# 按轮廓面积从大到小对检测到的轮廓进行排序,选取面积最大的轮廓
screenCnt = sorted(cnts, key=cv2.contourArea, reverse=True)[0]# 计算最大轮廓的周长,参数True表示轮廓是封闭的
peri = cv2.arcLength(screenCnt, True)
# 对最大轮廓进行多边形逼近,以减少轮廓上的点数,第二个参数为逼近精度
screenCnt = cv2.approxPolyDP(screenCnt, 0.02 * peri, True)
# 打印逼近后轮廓的形状信息
print(screenCnt.shape)# 在图像副本上绘制逼近后的最大轮廓,颜色为绿色,线条宽度为2像素
image_contour = cv2.drawContours(image.copy(), [screenCnt], -1, (0, 255, 0), 2)# 展示绘制了最大逼近轮廓的图像,窗口名为'image_contour'
cv2.imshow("image_contour", image_contour)
# 等待用户按键,防止窗口立即关闭
cv2.waitKey(0)

进行透视转换

# 调用之前定义的 four_point_transform 函数对原始图像进行四点透视变换
# screenCnt.reshape(4, 2) * ration 是将之前获取的轮廓点恢复到原始图像的尺寸
warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ration)
# 将透视变换后的图像保存为 invoice_new.jpg
cv2.imwrite("invoice_new.jpg", warped)
# 创建一个名为 "xxxxx" 的窗口,并且该窗口大小可以调整
cv2.namedWindow("xxxxx", cv2.WINDOW_NORMAL)
# 在 "xxxxx" 窗口中显示透视变换后的图像
cv2.imshow("xxxxx", warped)
# 等待用户按键,防止窗口立即关闭
cv2.waitKey(0)# 将透视变换后的图像从 BGR 颜色空间转换为灰度颜色空间
warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
# 调用 resize 函数将灰度图像的宽度调整为 400 像素
warped = resize(warped, 400)
# 对调整大小后的灰度图像使用 Otsu's 算法进行二值化处理
warped = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# 调用自定义的 cv_show 函数显示二值化后的图像,窗口名为 "1111"
cv_show("1111", warped)# 创建一个 1x1 的矩形结构元素,用于形态学操作
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1))
# 对二值化后的图像进行闭运算,填充小孔和连接相邻物体
closeX = cv2.morphologyEx(warped, cv2.MORPH_CLOSE, rectKernel)
# 调用自定义的 cv_show 函数显示闭运算后的图像,窗口名为 'gradX'
cv_show('gradX', closeX)

结果显示

在这里插入图片描述

invoice_new.jpg
在这里插入图片描述

在这里插入图片描述

如果不想使用这张照片,换其他图片也是可以的,处理步骤都是相同的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/11444.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

克隆OpenAI(基于openai API和streamlit)

utils.py: from langchain_openai import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationChain import osdef get_chat_response(api_key,prompt,memory): # memory不能是函数的内部局部变量&…

用 HTML、CSS 和 JavaScript 实现抽奖转盘效果

顺序抽奖 前言 这段代码实现了一个简单的抽奖转盘效果。页面上有一个九宫格布局的抽奖区域,周围八个格子分别放置了不同的奖品名称,中间是一个 “开始抽奖” 的按钮。点击按钮后,抽奖区域的格子会快速滚动,颜色不断变化&#xf…

【Linux】使用管道实现一个简易版本的进程池

文章目录 使用管道实现一个简易版本的进程池流程图代码makefileTask.hppProcessPool.cc 程序流程: 使用管道实现一个简易版本的进程池 流程图 代码 makefile ProcessPool:ProcessPool.ccg -o $ $^ -g -stdc11 .PHONY:clean clean:rm -f ProcessPoolTask.hpp #pr…

Elasticsearch的索引生命周期管理

目录 说明零、参考一、ILM的基本概念二、ILM的实践步骤Elasticsearch ILM策略中的“最小年龄”是如何计算的?如何监控和调整Elasticsearch ILM策略的性能? 1. **监控性能**使用/_cat/thread_pool API基本请求格式请求特定线程池的信息响应内容 2. **调整…

MQTT知识

MQTT协议 MQTT 是一种基于发布/订阅模式的轻量级消息传输协议,专门针对低带宽和不稳定网络环境的物联网应用而设计,可以用极少的代码为联网设备提供实时可靠的消息服务。MQTT 协议广泛应用于物联网、移动互联网、智能硬件、车联网、智慧城市、远程医疗、…

LabVIEW如何高频采集温度数据?

在LabVIEW中进行高频温度数据采集时,选择合适的传感器(如热电偶或热电阻)和采集硬件是关键。下面是一些建议,帮助实现高效的温度数据采集: 1. 传感器选择: 热电偶(Thermocouple)&am…

前端 | 深入理解Promise

1. 引言 JavaScript 是一种单线程语言,这意味着它一次仅能执行一个任务。为了处理异步操作,JavaScript 提供了回调函数,但是随着项目处理并发任务的增加,回调地狱 (Callback Hell) 使异步代码很难维护。为此,ES6带来了…

gesp(C++六级)(10)洛谷:P10722:[GESP202406 六级] 二叉树

gesp(C六级)(10)洛谷:P10722:[GESP202406 六级] 二叉树 题目描述 小杨有⼀棵包含 n n n 个节点的二叉树,且根节点的编号为 1 1 1。这棵二叉树任意⼀个节点要么是白色,要么是黑色。之后小杨会对这棵二叉树…

【UE】 APlayerState

APlayerState 定义和功能 APlayerState用于保存关于游戏玩家状态的信息,例如得分、玩家名称和其他统计数据。这些信息通常在多人游戏中被用来持续跟踪玩家的表现。设计理念 APlayerState的目的是提供一个存储和传输玩家特定信息的方法,这样即使玩家的控…

如何用微信小程序写春联

​ 生活没有模板,只需心灯一盏。 如果笑能让你释然,那就开怀一笑;如果哭能让你减压,那就让泪水流下来。如果沉默是金,那就不用解释;如果放下能更好地前行,就别再扛着。 一、引入 Vant UI 1、通过 npm 安装 npm i @vant/weapp -S --production​​ 2、修改 app.json …

C# Winform enter键怎么去关联button

1.关联按钮上的Key事件按钮上的keypress,keydown,keyup事件随便一个即可private void textBox1_KeyDown(object sender, KeyEventArgs e){if (e.KeyCode Keys.Enter){this.textBox2.Focus();}}2.窗体上的事件private void textBox2_KeyPress(object sen…

FPGA 使用 CLOCK_DEDICATED_ROUTE 约束

使用 CLOCK_DEDICATED_ROUTE 约束 CLOCK_DEDICATED_ROUTE 约束通常在从一个时钟区域中的时钟缓存驱动到另一个时钟区域中的 MMCM 或 PLL 时使 用。默认情况下, CLOCK_DEDICATED_ROUTE 约束设置为 TRUE ,并且缓存 /MMCM 或 PLL 对必须布局在相同…

Ollama+OpenWebUI部署本地大模型

OllamaOpenWebUI部署本地大模型 前言 Ollama是一个强大且易于使用的本地大模型推理框架,它专注于简化和优化大型语言模型(LLMs)在本地环境中的部署、管理和推理工作流。可以将Ollama理解为一个大模型推理框架的后端服务。 Ollama Ollama安…

SpringBoot 整合 SpringMVC:SpringMVC的注解管理

分类&#xff1a; 中央转发器(DispatcherServlet)控制器视图解析器静态资源访问消息转化器格式化静态资源管理 中央转发器&#xff1a; 中央转发器被 SpringBoot 自动接管&#xff0c;不需要我们在 web.xml 中配置&#xff1a; <servlet><servlet-name>chapter2&l…

Zemax 中带有体素探测器的激光谐振腔

激光谐振腔是激光系统的基本组成部分&#xff0c;在光的放大和相干激光辐射的产生中起着至关重要的作用。 激光腔由两个放置在光学谐振器两端的镜子组成。一个镜子反射率高&#xff08;后镜&#xff09;&#xff0c;而另一个镜子部分透明&#xff08;输出耦合器&#xff09;。…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.5 高级索引应用:图像处理中的区域提取

2.5 高级索引应用&#xff1a;图像处理中的区域提取 目录/提纲 #mermaid-svg-BI09xc20YqcpUam7 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-BI09xc20YqcpUam7 .error-icon{fill:#552222;}#mermaid-svg-BI09xc20…

[免费]微信小程序智能商城系统(uniapp+Springboot后端+vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序智能商城系统(uniappSpringboot后端vue管理端)&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序智能商城系统(uniappSpringboot后端vue管理端) Java毕业设计_哔哩哔哩_bilibili 项目介绍…

本地部署DeepSeek-R1保姆级教程

近期&#xff0c;我国一款开源模型 DeepSeek-R1以低成本和高性能震撼了全球科技界。该模型的开源性使开发者能够在本地环境中部署和运行&#xff0c;提供了更高的灵活性和控制力。如果你也想在本地部署 DeepSeek-R1&#xff0c;可以参考以下完整的教程&#xff0c;涵盖Mac 版本…

仿真设计|基于51单片机的贪吃蛇游戏

目录 具体实现功能 设计介绍 51单片机简介 资料内容 仿真实现&#xff08;protues8.7&#xff09; 程序&#xff08;Keil5&#xff09; 全部内容 资料获取 具体实现功能 利用单片机8*8点阵实现贪吃蛇游戏的控制。 仿真演示视频&#xff1a; 51-基于51单片机的贪吃蛇游…

【4Day创客实践入门教程】Day2 探秘微控制器——单片机与MicroPython初步

Day2 探秘微控制器——单片机与MicroPython初步 目录 Day2 探秘微控制器——单片机与MicroPython初步MicroPython语言基础开始基础语法注释与输出变量模块与函数 单片机基础后记 Day0 创想启程——课程与项目预览Day1 工具箱构建——开发环境的构建Day2 探秘微控制器——单片机…