一、TensorFlow的建模流程

1. 数据准备与预处理:
  • 加载数据:使用内置数据集或自定义数据。

  • 预处理:归一化、调整维度、数据增强。

  • 划分数据集:训练集、验证集、测试集。

  • 转换为Dataset对象:利用tf.data优化数据流水线。

import tensorflow as tf
from tensorflow.keras import layers# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()# 数据预处理:归一化并添加通道维度
x_train = x_train[..., tf.newaxis].astype('float32') / 255.0
x_test = x_test[..., tf.newaxis].astype('float32') / 255.0# 划分验证集(10%训练集作为验证)
val_split = 0.1
val_size = int(len(x_train) * val_split)
x_val, y_val = x_train[:val_size], y_train[:val_size]
x_train, y_train = x_train[val_size:], y_train[val_size:]# 创建tf.data.Dataset
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(1000).batch(32)
val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val)).batch(32)
test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
2. 构建模型:
  • 选择模型类型Sequential(顺序模型)、Functional API(复杂结构)或自定义子类化。

  • 堆叠网络层:如卷积层、池化层、全连接层。

model = tf.keras.Sequential([layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),  # 输入形状需匹配数据layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dropout(0.5),  # 防止过拟合layers.Dense(10, activation='softmax')  # 输出层,10类分类
])
3. 编译模型:
  • 选择优化器:如AdamSGD

  • 指定损失函数:分类常用sparse_categorical_crossentropy,回归用mse

  • 设置评估指标:如accuracyAUC

model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy']
)
4. 训练模型:
  • 调用fit方法:传入训练数据、验证数据、训练轮次。

  • 使用回调函数:如早停、模型保存、日志记录。

# 定义回调函数
callbacks = [tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),tf.keras.callbacks.ModelCheckpoint('best_model.h5', save_best_only=True)
]# 训练模型
history = model.fit(train_dataset,epochs=20,validation_data=val_dataset,callbacks=callbacks
)
5. 评估模型:
  • 使用evaluate方法:在测试集上评估性能。

test_loss, test_acc = model.evaluate(test_dataset)
print(f'Test Accuracy: {test_acc:.4f}, Test Loss: {test_loss:.4f}')
6. 模型应用与部署
  • 预测新数据:使用predict方法。

  • 保存与加载模型:支持H5或SavedModel格式。

# 预测示例
predictions = model.predict(x_test[:5])  # 预测前5个样本# 保存模型
model.save('mnist_model.h5')  # 保存为H5文件# 加载模型
loaded_model = tf.keras.models.load_model('mnist_model.h5')

关键注意事项

  • 数据维度:确保输入数据的形状与模型第一层匹配(如input_shape=(28,28,1))。

  • 过拟合控制:使用Dropout、数据增强、正则化等技术。

  • 回调函数优化:早停可防止无效训练,ModelCheckpoint保存最佳模型。

  • 硬件加速:利用GPU训练时,确保TensorFlow GPU版本已安装。

流程图

使用TensorFlow实现神经网络模型的一般流程包括:1. 数据准备与预处理
2. 构建模型
3. 编译模型
4. 训练模型
5. 评估模型
6. 模型应用与部署

通过以上步骤,可快速实现从数据到部署的完整流程,适应分类、回归等多种任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/11478.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸟哥Linux私房菜笔记(三)

鸟哥Linux私房菜笔记(三) 该第三部分和第四部分主要为原书的第十一章(正则表达式与文件格式化处理),第十二章学习shell脚本,第十六章(进程管理与SElinux初探部分),第十七…

基于springboot+vue的哈利波特书影音互动科普网站

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.12 连续数组:为什么contiguous这么重要?

2.12 连续数组:为什么contiguous这么重要? 目录 #mermaid-svg-wxhozKbHdFIldAkj {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-wxhozKbHdFIldAkj .error-icon{fill:#552222;}#mermaid-svg-…

【网络】3.HTTP(讲解HTTP协议和写HTTP服务)

目录 1 认识URL1.1 URI的格式 2 HTTP协议2.1 请求报文2.2 响应报文 3 模拟HTTP3.1 Socket.hpp3.2 HttpServer.hpp3.2.1 start()3.2.2 ThreadRun()3.2.3 HandlerHttp() 总结 1 认识URL 什么是URI? URI 是 Uniform Resource Identifier的缩写&…

力扣第149场双周赛

文章目录 题目总览题目详解找到字符串中合法的相邻数字重新安排会议得到最多空余时间I3440.重新安排会议得到最多空余时间II 第149场双周赛 题目总览 找到字符串中合法的相邻数字 重新安排会议得到最多空余时间I 重新安排会议得到最多空余时间II 变成好标题的最少代价 题目…

HTB:Alert[WriteUP]

目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用ffuf对alert.htb域名进行子域名FUZZ 使用go…

96,【4】 buuctf web [BJDCTF2020]EzPHP

进入靶场 查看源代码 GFXEIM3YFZYGQ4A 一看就是编码后的 1nD3x.php 访问 得到源代码 <?php // 高亮显示当前 PHP 文件的源代码&#xff0c;用于调试或展示代码结构 highlight_file(__FILE__); // 关闭所有 PHP 错误报告&#xff0c;防止错误信息泄露可能的安全漏洞 erro…

吴恩达深度学习——有效运作神经网络

内容来自https://www.bilibili.com/video/BV1FT4y1E74V&#xff0c;仅为本人学习所用。 文章目录 训练集、验证集、测试集偏差、方差正则化正则化参数为什么正则化可以减少过拟合Dropout正则化Inverted Dropout其他的正则化方法数据增广Early stopping 归一化梯度消失与梯度爆…

【xdoj-离散线上练习】T251(C++)

解题反思&#xff1a; 开始敲代码前想清楚整个思路比什么都重要嘤嘤嘤&#xff01;看到输入m, n和矩阵&#xff0c;注意不能想当然地认为就是高m&#xff0c;宽n的矩阵&#xff0c;细看含义 比如本题给出了树的邻接矩阵&#xff0c;就是n*n的&#xff0c;代码实现中没有用到m这…

deep seek R1本地化部署及openAI API调用

先说几句题外话。 最近deep seek火遍全球&#xff0c;所以春节假期期间趁着官网优惠充值了deep seek的API&#xff0c;用openAI的接口方式尝试了下对deep seek的调用&#xff0c;并且做了个简单测试&#xff0c;测试内容确实非常简单&#xff1a;通过prompt提示词让大模型对用…

01.双Android容器解决方案

目录 写在前面 一&#xff0c;容器 1.1 容器的原理 1.1.1 Namespace 1.1.2 Cgroups&#xff08;Control Groups&#xff09; 1.1.3 联合文件系统&#xff08;Union File System&#xff09; 1.2 容器的应用 1.2.1 微服务架构 1.2.2 持续集成和持续部署&#xff08;CI/…

Python 绘图工具详解:使用 Matplotlib、Seaborn 和 Pyecharts 绘制散点图

目录 数据可视化1.使用 matplotlib 库matplotlib 库 2 .使用 seaborn 库seaborn 库 3 .使用 pyecharts库pyecharts库 注意1. 确保安装了所有必要的库2. 检查Jupyter Notebook的版本3. 使用render()方法保存为HTML文件4. 使用IFrame在Notebook中显示HTML文件5. 检查是否有其他输…

无人机集群新年祝福表演技术原理详解

无人机集群新年祝福表演技术是一项集飞行控制技术、智能协调和精密控制于一体的高科技表演形式。其技术原理主要涉及无人机硬件设备、软件系统以及表演协调等多个方面。以下是对该技术原理的详细解析&#xff1a; 一、无人机硬件设备 无人机集群表演的核心是无人机本身&#x…

贪吃蛇实现

1.资料来源 https://learn.microsoft.com/zh-cn/windows/console/getstdhandle 2.前言 简介 贪吃蛇是久负盛名的游戏&#xff0c;和俄罗斯方块、扫雷等游戏位列于经典游戏的行列。 《贪食蛇》中玩家控制一条不断移动的蛇&#xff0c;在屏幕上吃掉出现的食物。每吃掉一个食物…

计算机毕业设计Python动漫推荐系统 漫画推荐系统 动漫视频推荐系统 机器学习 bilibili动漫爬虫 数据可视化 数据分析 大数据毕业设计

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

MyBatis-Plus笔记-快速入门

大家在日常开发中应该能发现&#xff0c;单表的CRUD功能代码重复度很高&#xff0c;也没有什么难度。而这部分代码量往往比较大&#xff0c;开发起来比较费时。 因此&#xff0c;目前企业中都会使用一些组件来简化或省略单表的CRUD开发工作。目前在国内使用较多的一个组件就是…

《OpenCV》——图像透视转换

图像透视转换简介 在 OpenCV 里&#xff0c;图像透视转换属于重要的几何变换&#xff0c;也被叫做投影变换。下面从原理、实现步骤、相关函数和应用场景几个方面为你详细介绍。 原理 实现步骤 选取对应点&#xff1a;要在源图像和目标图像上分别找出至少四个对应的点。这些对…

克隆OpenAI(基于openai API和streamlit)

utils.py&#xff1a; from langchain_openai import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationChain import osdef get_chat_response(api_key,prompt,memory): # memory不能是函数的内部局部变量&…

用 HTML、CSS 和 JavaScript 实现抽奖转盘效果

顺序抽奖 前言 这段代码实现了一个简单的抽奖转盘效果。页面上有一个九宫格布局的抽奖区域&#xff0c;周围八个格子分别放置了不同的奖品名称&#xff0c;中间是一个 “开始抽奖” 的按钮。点击按钮后&#xff0c;抽奖区域的格子会快速滚动&#xff0c;颜色不断变化&#xf…

【Linux】使用管道实现一个简易版本的进程池

文章目录 使用管道实现一个简易版本的进程池流程图代码makefileTask.hppProcessPool.cc 程序流程&#xff1a; 使用管道实现一个简易版本的进程池 流程图 代码 makefile ProcessPool:ProcessPool.ccg -o $ $^ -g -stdc11 .PHONY:clean clean:rm -f ProcessPoolTask.hpp #pr…