(数字图像处理MATLAB+Python)第十一章图像描述与分析-第三、四节:几何表述和形状描述

文章目录

  • 一:几何描述
    • (1)像素间几何关系
      • A:邻接与连通
      • B:距离
    • (2)像素间几何特征
      • A:位置
      • B:方向
      • C:尺寸
    • (3)程序
  • 二:形状描述
    • (1)矩形度
    • (2)圆形度
      • A:圆度
      • B:边界能量
      • C:圆形性
      • D:内切圆与外接圆半径比
      • E:程序
    • (3)中轴变换
      • A:概念
      • B:程序

一:几何描述

(1)像素间几何关系

A:邻接与连通

前景与背景

  • 前景 指的是图像中的目标或感兴趣的物体,通常具有较高的像素值(亮度或颜色),并且在视觉上与其他部分区分开来。在像素级别,前景像素通常集中在一起,形成连续的区域,表示目标的外轮廓或内部信息
  • 背景 是指前景之外的图像区域,它通常包含着前景,并提供了前景的环境和上下文信息。背景像素通常具有较低的像素值(亮度或颜色),并且在视觉上与前景区域有所区别

在这里插入图片描述

在几何关系方面,前景和背景之间存在多种关系,如:

  • 前景-背景分割:这是图像处理和计算机视觉中的一个重要任务,即将图像中的前景目标从背景中分割出来。通过分析像素的几何关系、像素值和纹理等特征,可以进行前景-背景分割,以识别和提取出感兴趣的目标区域
  • 前景-背景交互:在图像中,前景和背景可能相互作用或相互影响。例如,在人物摄影中,主体通常是前景,背景则提供了合适的背景环境。通过调整前景和背景之间的关系,可以实现更好的视觉效果
  • 前景-背景约束:在计算机视觉领域,前景和背景之间的几何关系可以用于约束分析和处理的结果。例如,在对象识别中,通过考虑前景和背景之间的边界、比例关系等几何特征,可以提高目标检测和分类的准确性

路径与连通

  • 路径 指的是从一个像素到另一个像素的连续线条或曲线。在图像处理和计算机视觉中,路径常用于描述物体的边界、轮廓或者像素之间的连接关系。路径可以按照不同的形式进行表示,比如二值图像中的像素序列、连续边缘点、多边形等
    • 轮廓路径:在目标分割和识别中,轮廓路径表示了目标的外形边界,通过连接目标边界上的像素点而形成。
    • 骨架路径:骨架路径也称为中轴线,表示了目标的主要结构或形态特征,是由目标内部的像素点连接而成
  • 连通 指的是像素之间的直接邻接关系,即相邻像素之间通过共享边或角来连接。在像素级别,连通性可以根据四邻域或八邻域进行定义,四邻域表示上下左右四个相邻像素,八邻域表示上下左右以及对角线方向的八个相邻像素
    • 4连通:在四邻域中,如果两个像素之间共享一条边,则它们被认为是4连通的。
    • 8连通:在八邻域中,如果两个像素之间共享一条边或者一个角,则它们被认为是8连通的
      在这里插入图片描述

B:距离

距离:对于像素 p p p q q q z z z,如果满足以下三个条件,则称 d d d是距离函数或度量

  • d ( p , q ) ≥ 0 d(p,q)\geq 0 d(p,q)0
  • d ( p , q ) = d ( q , p ) d(p,q)=d(q,p) d(p,q)=d(q,p)
  • d ( p , z ) ≤ d ( p , q ) + d ( q , z ) d(p,z)\leq d(p,q)+d(q,z) d(p,z)d(p,q)+d(q,z)

其中,欧式距离是指

D e ( p , q ) = ( x − s ) 2 + ( y − t ) 2 D_{e}(p, q)=\sqrt{(x-s)^{2}+(y-t)^{2}} De(p,q)=(xs)2+(yt)2


城市距离 D 4 ( p , q ) = ∣ x − s ∣ + ∣ y − t ∣ D_{4}(p,q)=|x-s|+|y-t| D4(p,q)=xs+yt

在这里插入图片描述

棋盘距离 D 8 ( p , q ) = m a x ( ∣ x − s ∣ , ∣ y − t ∣ ) D_{8}(p,q)=max(|x-s|,|y-t|) D8(p,q)=max(xs,yt)

在这里插入图片描述

(2)像素间几何特征

A:位置

位置:物体在图像中的位置,用物体面积的中心点来表示。二值图像质量分布是均匀的,质心和形心重合。若图像中的物体对应的像素位置坐标为 ( x i , y i ) ( i = 0 , 1 , … , n - 1 ; j = 0 , 1 , … , m - 1 ) (x_{i},y_{i})(i=0, 1, …, n-1;j=0, 1, …, m-1) (xi,yi)(i=0,1,,n1j=0,1,,m1),则质心位置坐标为

x ˉ = 1 m n ∑ i = 0 n − 1 ∑ j = 0 m − 1 x i ; y ˉ = 1 m n ∑ i = 0 n − 1 ∑ j = 0 m − 1 y j \bar{x}=\frac{1}{m n} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} x_{i} ; \bar{y}=\frac{1}{m n} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} y_{j} xˉ=mn1i=0n1j=0m1xi;yˉ=mn1i=0n1j=0m1yj

B:方向

方向:如果物体是细长的,则可以把较长方向的轴定为物体的方向。将最小二阶矩轴(最小惯量轴在二维平面上的等效轴)定义为较长物体的方向。也就是说,要找出一条直线,使下式定义的 E E E值最小

E = ∬ r 2 f ( x , y ) d x d y E=\iint r^{2} f(x, y) d x d y E=r2f(x,y)dxdy

C:尺寸

长宽:当物体的边界已知时,用其外接矩形的尺寸来刻画它的基本形状是最简单的方法求物体在坐标系方向上的外接矩形,只需计算物体边界点的最大和最小坐标值,就可得到物体的水平和垂直跨度

  • 最小外接矩形:对任意朝向的物体,水平和垂直并非是我们感兴趣的方向。有必要确定物体的主轴,然后计算反映物体形状特征的主轴方向上的长度和与之垂直方向上的宽度,这样的外接矩形是物体的

周长:区域的边界长度,用于区别具有简单或复杂形状的物体;表示方法不同,计算方法也不同

  • 边界用隙码表示:把图像中的像素看作单位面积小方块,则图像中的区域和背景均由小方块组成。区域的周长即为区域和背景缝隙的长度和,此时边界用隙码表示。因此,求周长就是计算隙码的长度
  • 边界用链码表示:把像素看作一个个点时,周长用链码表示,求周长也即计算链码长度
  • 边界用面积表示:即边界点数之和,每个点占面积为1的一个小方块

在这里插入图片描述

面积:度量物体的总尺寸,只与该物体的边界有关,与其内部灰度级的变化无关。像素计数面积是指

  • 统计边界内部(也包括边界上)的像素数目
  • 对二值图像而言,若用1表示物体,用0表示背景,其面积就是统计 f ( x , y ) = 1 f(x,y)=1 f(x,y)=1的个数

(3)程序

如下:对图像进行阈值分割,并统计区域的几何特征

在这里插入图片描述


matlab

clear,clc,close all;
image=imread('plane.jpg');
BW=im2bw(rgb2gray(image));
figure,imshow(BW),title('二值化图像');
% imwrite(BW,'biplane.jpg');
SE=strel('square',3);
Morph=imopen(BW,SE); 
Morph=imclose(Morph,SE);
figure,imshow(Morph),title('形态学滤波'); 
% imwrite(Morph,'morphplane.jpg');
[B,L]=bwboundaries(1-Morph);
figure,imshow(L),title('划分的区域');
% imwrite(L,'Lplane.jpg');
STATS = regionprops(L,'Area', 'Centroid','Orientation','BoundingBox');
figure,imshow(image),title('检测的区域');
hold on;
for i=1:length(B)boundary=B{i};plot(boundary(:,2),boundary(:,1),'r','LineWidth',2);
end
rectangle('Position',STATS.BoundingBox,'edgecolor','g');
hold off;
% STATS

python

import numpy as np
import cv2
import matplotlib.pyplot as pltimage = cv2.imread('plane.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, bw = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
plt.imshow(bw, cmap='gray')
plt.title('二值化图像')
plt.show()kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
morph = cv2.morphologyEx(bw, cv2.MORPH_OPEN, kernel)
morph = cv2.morphologyEx(morph, cv2.MORPH_CLOSE, kernel)
plt.imshow(morph, cmap='gray')
plt.title('形态学滤波')
plt.show()contours, _ = cv2.findContours(255 - morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
boundary_image = np.zeros_like(morph)
cv2.drawContours(boundary_image, contours, -1, 255, 1)
plt.imshow(boundary_image, cmap='gray')
plt.title('划分的区域')
plt.show()stats = []
for contour in contours:area = cv2.contourArea(contour)centroid = np.mean(contour, axis=0)[0]rect = cv2.boundingRect(contour)stats.append({'Area': area,'Centroid': centroid,'BoundingBox': rect})image_with_boundary = image.copy()
for boundary in contours:cv2.drawContours(image_with_boundary, [boundary], -1, (0, 0, 255), 2)for stat in stats:cv2.rectangle(image_with_boundary, stat['BoundingBox'], (0, 255, 0), 2)plt.imshow(cv2.cvtColor(image_with_boundary, cv2.COLOR_BGR2RGB))
plt.title('检测的区域')
plt.show()

二:形状描述

(1)矩形度

矩形度:用于描述实体或区域与矩形接近程度的量化指标。它衡量了一个对象或区域在形状上与矩形的相似程度,即其紧凑性和规则性。矩形度是通过比较对象的实际面积和最小外接矩形(Bounding Rectangle)的面积来计算的。最小外接矩形是能够完全包围对象的最小面积的矩形,它的长宽与对象的主要方向一致。矩形度的计算公式如下

  • A o A_{o} Ao:该物体的面积
  • A M E R A_{MER} AMER:MER的面积

R = A o A M E R R=\frac{A_{o}}{A_{MER}} R=AMERAo

MER宽与长的比值为

r = W M E R L M E R r=\frac{W_{MER}}{L_{MER}} r=LMERWMER

(2)圆形度

A:圆度

圆度:用于描述实体或区域与圆形接近程度的量化指标。它衡量了一个对象或区域在形状上与圆形的相似程度,即其圆形度。圆度是通过比较对象的实际面积和等效圆形的面积来计算的。等效圆形是具有与对象相同面积的圆形,其半径可以通过将对象的面积除以π然后开方来计算。圆度的计算公式如下

  • F = 1 F=1 F=1:区域为圆
  • F < 1 F<1 F<1:区域为其他形状
  • 区域边界弯曲越复杂,区域的性状越偏离圆,F会越小
    F = 4 π A P 2 F=\frac{4\pi A}{P^{2}} F=P24πA

B:边界能量

边界能量:边界上的点的曲率函数

  • P P P:物体的周长
  • p p p:边界上点到某一起始点的距离
  • r ( p ) r(p) r(p):边界上一点的瞬时曲率半径。是该点与边界相切圆的半径
  • K ( p ) K(p) K(p) :是周期为P的周期函数

K ( p ) = 1 r ( p ) K(p)=\frac{1}{r(p)} K(p)=r(p)1

在这里插入图片描述

C:圆形性

圆形性:是用于描述实体或物体形状接近球体的度量标准。它衡量了一个对象或区域在形状上与球体的相似程度。圆形性是通过比较对象的体积和等效球体的体积来计算的。等效球体是具有与对象相同体积的球体,其半径可以通过将对象的体积除以(4/3π)然后开立方根来计算

C = μ R σ R 2 μ R = 1 K ∑ k = 0 K − 1 ∥ ( x k , y k ) − ( x ˉ , y ˉ ) ∥ σ R 2 = 1 K ∑ k = 0 K − 1 [ ∥ ( x k , y k ) − ( x ˉ , y ˉ ) ∥ − μ R ] 2 \begin{array}{l}C=\frac{\mu_{R}}{\sigma_{R}^{2}} \\\mu_{R}=\frac{1}{K} \sum_{k=0}^{K-1}\left\|\left(x_{k}, y_{k}\right)-(\bar{x}, \bar{y})\right\| \\\sigma_{R}^{2}=\frac{1}{K} \sum_{k=0}^{K-1}\left[\left\|\left(x_{k}, y_{k}\right)-(\bar{x}, \bar{y})\right\|-\mu_{R}\right]^{2}\end{array} C=σR2μRμR=K1k=0K1(xk,yk)(xˉ,yˉ)σR2=K1k=0K1[(xk,yk)(xˉ,yˉ)μR]2

D:内切圆与外接圆半径比

内切圆与外接圆半径比:刻画物体边界的复杂程度

  • r i r_{i} ri:区域内切圆半径
  • r c r_{c} rc:区域外接圆半径

S = r i r c S=\frac{r_{i}}{r_{c}} S=rcri

两个圆的圆心都在区域的重心上

  • 当区域为圆时, S S S最大1.0
  • 其余形状时,则有 S S S<1.0
  • S S S不受区域平移、旋转和尺度变化的影响

在这里插入图片描述

E:程序

如下,对原图进行分割,并检测圆和矩形

在这里插入图片描述


matlab

clear,clc,close all;
image=rgb2gray(imread('shape.png'));
figure,imshow(image),title('ԭͼ');
BW=edge(image,'canny');
figure,imshow(BW),title('±ß½çͼÏñ');
% imwrite(BW,'shapeedge.jpg');
SE=strel('disk',5); 
Morph=imclose(BW,SE);
figure,imshow(Morph),title('ÐÎ̬ѧÂ˲¨'); 
% imwrite(Morph,'shapemorph.jpg');
Morph=imfill(Morph,'holes');
figure,imshow(Morph),title('ÇøÓòÌî³ä');
imwrite(Morph,'shapefill.jpg');
[B,L]=bwboundaries(Morph);
figure,imshow(L),title('¼ì²âÔ²ºÍ¾ØÐÎ');
% imwrite(L,'Lplane.jpg');
STATS = regionprops(L,'Area', 'Centroid','BoundingBox');
len=length(STATS);
hold on
for i=1:lenR=STATS(i).Area/(STATS(i).BoundingBox(3)*STATS(i).BoundingBox(4));boundary=fliplr(B{i});everylen=length(boundary);F=4*pi*STATS(i).Area/(everylen^2);dis=pdist2(STATS(i).Centroid,boundary,'euclidean');miu=sum(dis)/everylen;sigma=sum((dis-miu).^2)/everylen;C=miu/sigma;if R>0.9 && F<1 rectangle('Position',STATS(i).BoundingBox,'edgecolor','g','linewidth',2);plot(STATS(i).Centroid(1),STATS(i).Centroid(2),'g*');endif R>pi/4-0.1 && R<pi/4+0.1 && F>0.9 && C>10rectangle('Position',[STATS(i).Centroid(1)-miu,STATS(i).Centroid(2)-miu,2*miu,2*miu],...'Curvature',[1,1],'edgecolor','r','linewidth',2); plot(STATS(i).Centroid(1),STATS(i).Centroid(2),'r*');end
end
hold off

python

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像并将其转换为灰度图像
image = cv2.imread('shape.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 显示原始图片
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('原始图像')
plt.show()# 边缘检测
edges = cv2.Canny(gray, 30, 100)# 显示边缘图片
plt.imshow(edges, cmap='gray')
plt.title('边缘图像')
plt.show()# 闭运算
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)# 显示闭运算结果
plt.imshow(closed, cmap='gray')
plt.title('闭运算')
plt.show()# 填充内部空洞
filled = cv2.fillHoles(closed)# 显示填充结果
plt.imshow(filled, cmap='gray')
plt.title('填充后图像')
plt.show()# 寻找轮廓并进行形状分析
contours, _ = cv2.findContours(filled, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:area = cv2.contourArea(cnt)x, y, w, h = cv2.boundingRect(cnt)rect_ratio = area / (w * h)perimeter = cv2.arcLength(cnt, True)circularity = 4 * np.pi * area / (perimeter ** 2)centroid = (int(x + w / 2), int(y + h / 2))distance = cv2.pointPolygonTest(cnt, centroid, True)if rect_ratio > 0.9 and circularity < 1:cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)cv2.circle(image, centroid, 3, (0, 255, 0), -1)if np.abs(circularity - np.pi / 4) < 0.1 and rect_ratio > 0.9 and distance > 10:cv2.rectangle(image, (int(centroid[0] - distance), int(centroid[1] - distance)),(int(centroid[0] + distance), int(centroid[1] + distance)), (0, 0, 255), 2)cv2.circle(image, centroid, 3, (0, 0, 255), -1)# 显示最终结果
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('形状分析结果')
plt.show()

(3)中轴变换

A:概念

中轴变换:是一种图像处理技术,用于提取对象或区域的中轴线特征。中轴线是指与对象边界相切且具有最大内切圆的曲线。中轴变换的基本思想是通过迭代运算,在对象的边界上逐渐向内部收缩,直到达到中轴线所在位置。在这个过程中,计算每个边界点到最近内切圆的距离,并将这些距离值叠加在一起形成一个距离场。通过阈值处理和连接操作,可以得到中轴线。基本步骤如下

  • 对图像进行预处理,例如灰度化、二值化等操作,使得对象与背景分离
  • 找到对象的边界,可以使用边缘检测算法(如Canny边缘检测)来获得二值图像的边缘
  • 初始化一个空图像作为距离场,距离场的大小与原始图像相同
  • 从对象的边界点开始,对每个边界点进行以下操作
    • 计算当前边界点到对象内部的最近内切圆的半径
    • 将该半径值存储在距离场中对应的位置
  • 根据距离场的阈值,将其二值化得到中轴图像
  • 进行连接操作,对中轴图像进行处理,使得中轴线连续而不间断

在这里插入图片描述

中轴变换常用于形状分析、形态学处理、特征提取等领域。通过提取对象的中轴线,可以获得对象的结构信息和几何特征,有助于形状分析、目标识别、图像重建等应用。需要注意的是,中轴变换的结果受到图像预处理、阈值选择、连接方式等因素的影响。因此,在实际应用中,可能需要根据具体情况进行参数调整和优化,以获取更好的中轴线结果

B:程序

如下,提取目标图像骨架

在这里插入图片描述


matlab

clear,clc,close all;
Image=imread('test.bmp');
BW=im2bw(Image);
figure,imshow(BW);
result=bwmorph(BW,'skel',Inf);        
figure,imshow(result);

python

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像并转换为二值图像
image = cv2.imread('test.bmp', 0)
ret, bw = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 显示原始二值图像
plt.imshow(bw, cmap='gray')
plt.title('原始二值图像')
plt.show()# 中轴变换
skeleton = np.zeros_like(bw)
size = np.size(bw)
element = cv2.getStructuringElement(cv2.MORPH_CROSS, (3,3))while True:eroded = cv2.erode(bw, element)temp = cv2.dilate(eroded, element)temp = cv2.subtract(bw, temp)skeleton = cv2.bitwise_or(skeleton, temp)bw = eroded.copy()zeros = size - cv2.countNonZero(bw)if zeros == size:break# 显示中轴图像
plt.imshow(skeleton, cmap='gray')
plt.title('中轴图像')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/115970.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SPI3+DMA外设驱动-TFTLCD初始化

前言 &#xff08;1&#xff09;本系列是基于STM32的项目笔记&#xff0c;内容涵盖了STM32各种外设的使用&#xff0c;由浅入深。 &#xff08;2&#xff09;小编使用的单片机是STM32F105RCT6&#xff0c;项目笔记基于小编的实际项目&#xff0c;但是博客中的内容适用于各种单片…

13.动态渲染侧边栏

为什么要动态渲染&#xff1f; 比如我们现在需要以下侧边栏的数据&#xff1a; 如果一个个的去写标签会很麻烦&#xff0c;发现导航栏中的数据分为两类&#xff0c;一类是一级导航&#xff0c;另一位是二级导航&#xff08;有子页&#xff09;&#xff0c;因此直接写两个函数判…

ClickHouse进阶(六):副本与分片-2-Distributed引擎

进入正文前&#xff0c;感谢宝子们订阅专题、点赞、评论、收藏&#xff01;关注IT贫道&#xff0c;获取高质量博客内容&#xff01; &#x1f3e1;个人主页&#xff1a;含各种IT体系技术,IT贫道_Apache Doris,大数据OLAP体系技术栈,Kerberos安全认证-CSDN博客 &#x1f4cc;订阅…

如何使用SQL系列 之 了解SQL中的约束规则

简介 在设计数据库时&#xff0c;有时可能需要对某些列中允许的数据设置限制。例如&#xff0c;如果你要创建一张表来保存摩天大楼的信息&#xff0c;你可能希望在保存每座大楼高度的列中禁止使用负值。 关系型数据库管理系统(RDBMS)允许你使用约束来控制哪些数据被添加到表中…

Spring Boot源码解读与原理剖析:深入探索Java开发的奥秘!

评论区留言赠书15本 关注点赞评论&#xff0c;评论区回复“Spring Boot源码解读与原理剖析&#xff1a;深入探索Java开发的奥秘&#xff01;” 每篇最多评论3条&#xff01;&#xff01;采用抽奖助手自动拉取评论区有效评论送书两本&#xff0c; 开奖时间&#xff1a;9月11号 承…

MySQL数据库——多表查询(3)-自连接、联合查询、子查询

目录 自连接 查询语法 自连接演示 联合查询 查询语法 子查询 介绍 标量子查询 列子查询 行子查询 表子查询 自连接 通过前面的学习&#xff0c;我们对于连接已经有了一定的理解。而自连接&#xff0c;通俗地去理解就是自己连接自己&#xff0c;即一张表查询多次。…

二进制数的位运算(非和异或)invert()和bitwise_xor()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 二进制数的位运算(非和异或) invert()和bitwise_xor() [太阳]选择题 下列代码最后一次输出的结果是&#xff1f; import numpy as np a, b 3, 10 print("【执行】np.binary_repr(a, 4)…

vue3+ts组件通信

1、父组件向组件传参 父组件代码 子组件代码 2、子组件向父组件传参 组件间代码 父组件代码 3、如果eslint报错&#xff0c;需在.eslintrc.js中添加一行代码 4、通过父组件通过 ref 获取子组件的属性或者方法 父组件代码 子组件代码 5、孙子组件provide和inject 父组件…

再也不信能用99年的IDEA激活方式了

今天给大家安利一款IDEA伴侣神器 Toolbox&#xff0c;开发必备的IDEA大家都在用&#xff0c;但很多小伙伴没用过Toolbox。 介绍 为什么使用 JetBrains Toolbox&#xff1f; 包含超过 15 款可用于专业开发的工具。 每个工具专门针对其技术开发。 所有工具都会定期更新&#…

python 笔记(3)——request、爬虫、socket、多线程

目录 1、使用requests发送http请求 1-1&#xff09;发送get请求 1-2&#xff09;发送 post 请求 1-3&#xff09;发送 get 请求下载网络图片 1-4&#xff09;使用 post 上传文件 1-5&#xff09;自动维护 session 的方式 2、使用 os.popen 执行cmd命令 3、基于 beautif…

卷积神经网络实现运动鞋识别 - P5

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f366; 参考文章&#xff1a;Pytorch实战 | 第P5周&#xff1a;运动鞋识别&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制&#x1f680; 文章来源&#xff1a;K同学的学习圈子 目录…

沐风老师3DMAX厨房橱柜生成器KitchenCabinetGenerator教程

3DMAX厨房橱柜生成器插件使用方法 3DMAX橱柜生成器KitchenCabinetGenerator是一个在3dMax中自动创建三维橱柜模型的高效脚本。它有多种风格的台面、门和橱柜&#xff0c;可以灵活地应用于Archviz项目&#xff0c;同时为3D艺术家节省大量时间。 【适用版本】 1.3dMax2018 – 20…

YOLO数据集划分(训练集、验证集、测试集)

1.将训练集、验证集、测试集按照7:2:1随机划分 1.项目准备 1.在项目下新建一个py文件&#xff0c;名字就叫做splitDataset1.py 2.将自己需要划分的原数据集就放在项目文件夹下面 以我的为例&#xff0c;我的原数据集名字叫做hatDataXml 里面的JPEGImages装的是图片 Annota…

设计模式-适配器

文章目录 一、简介二、适配器模式基础1. 适配器模式定义与分类2. 适配器模式的作用与优势3.UML图 三、适配器模式实现方式1. 类适配器模式2. 对象适配器模式3.类适配器模式和对象适配器模式对比 四、适配器模式应用场景1. 继承与接口的适配2. 跨平台适配 五、适配器模式与其他设…

C++之std::distance应用实例(一百八十八)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

论文解读 | 三维点云深度学习的综述

原创 | 文 BFT机器人 KITTI 是作为基准测试是自动驾驶中最具影响力的数据集之一&#xff0c;在学术界和工业界都被广泛使用。现有的三维对象检测器存在着两个限制。第一是现有方法的远程检测能力相对较差。其次&#xff0c;如何充分利用图像中的纹理信息仍然是一个开放性的问题…

uniapp授权小程序隐私弹窗效果demo(整理)

9月15号前要配置这句话 "__usePrivacyCheck__": true,官方“小程序隐私协议开发指南”文档 <template> <view class"dealBox"><view class"txtBox padding10"><!-- 查看协议 -->在您使用施工现场五星计划小程序之前&am…

解决D盘的类型不是基本,而是动态的问题

一、正确的图片 1.1图片 1.2本人遇到的问题 二、将动态磁盘 转为基本盘 2.1 基本概念&#xff0c;动态无法转化为基本&#xff0c;不是双向的&#xff0c;借助软件 网址&#xff1a;转换动态磁盘到普通磁盘_检测到计算机本地磁盘为动态分区_卫水金波的博客-CSDN博客 2.2分区…

我开课了!《机器学习》公益课9月4日开课

我是黄海广&#xff0c;大学老师&#xff0c;我上的一门课叫《机器学习》&#xff0c;本科生学机器学习有点难&#xff0c;但也不是没有可能&#xff0c;我在摸索中&#xff0c;设计适合本科生的机器学习课程&#xff0c;写了教材&#xff0c;录了视频&#xff0c;做了课件。我…

安装使用electron

一、安装node和npm 运行cmd查看是否安装及版本号 npm -v node -v 二、安装electron npm直接安装会报错缺少什么文件&#xff0c;使用cnpm进行安装 直接安装cnmp后&#xff0c;再用cnmp命令安装可能会报错Error: Cannot find module ‘node:util’ 原因是npm版本与cnpm版本…