WGCNA分析教程 | 代码四

写在前面

WGCNA的教程,我们在前期的推文中已经退出好久了。今天在结合前期的教程的进行优化一下。只是在现有的教程基础上,进行修改。其他的其他并无改变。

前期WGCNA教程

  • WGCNA分析 | 全流程分析代码 | 代码一

  • WGCNA分析 | 全流程分析代码 | 代码二

  • WGCNA分析 | 全流程代码分享 | 代码三

本次教程的优化点

注意:本次教程在教程二的基础上修改。

  1. 教程代码更规范
  2. 教程添加了过滤数值流程
  3. 教程添加merge模块后图形绘制(注:在教程二的基础上)
  4. 教程添加更多的注释信息
  5. 教程后期添加视频讲解

WGCNA教程 | 代码四


本期教程输出所有的文件信息。

设置文件位置及导入包

##'@加权基因共表达分析(WGCNA)
##'@2023.09.02
##'@整理者:小杜的生信笔记
##'@前期教程网址:https://mp.weixin.qq.com/s/Ln9TP74nzWhtvt7obaMp1A
##'
##'@本教程主要主要是为了优化前期代码,在前期的基础上进行修改。
##'@若您的数据量较大,我们建议WGCNA在服务器上跑。
##'##==============================================================================setwd("E:\\小杜的生信筆記\\2023\\20230217_WGCNA\\WGCNA_04")
rm(list = ls())
#install.packages("WGCNA")
#BiocManager::install('WGCNA')
library(WGCNA)
options(stringsAsFactors = FALSE)
#enableWGCNAThreads(60) ## 打开多线程
#Read in the female liver data set

导入数据

我们这里给出了两种不同文件的导入方式,txtcsv

#'@导入数据
#'@导入txt格式数据
# WGCNA.fpkm = read.table("ExpData_WGCNA.txt",header=T,
#                         comment.char = "",
#                         check.names=F)
##'@导入csv文件格式
WGCNA.fpkm = read.csv("ExpData_WGCNA.csv", header = T, check.names = F)
WGCNA.fpkm[1:10,1:10]

检查数据缺失值

gsg = goodSamplesGenes(datExpr0, verbose = 3)
gsg$allOK
if (!gsg$allOK)
{if (sum(!gsg$goodGenes)>0)printFlush(paste("Removing genes:", paste(names(datExpr0)[!gsg$goodGenes], collapse = ", ")))if (sum(!gsg$goodSamples)>0)printFlush(paste("Removing samples:", paste(rownames(datExpr0)[!gsg$goodSamples], collapse = ", ")))# Remove the offending genes and samples from the data:datExpr0 = datExpr0[gsg$goodSamples, gsg$goodGenes]
}

过滤数值 [optional]

@过滤数值(optional),此步根据你自己的数据进行过滤数值,过滤的数值大小根据自己需求修改

meanFPKM=0.5  ###--过滤标准,可以修改
n=nrow(datExpr0)
datExpr0[n+1,]=apply(datExpr0[c(1:nrow(datExpr0)),],2,mean)
datExpr0=datExpr0[1:n,datExpr0[n+1,] > meanFPKM]
# for meanFpkm in row n+1 and it must be above what you set--select meanFpkm>opt$meanFpkm(by rp)
filtered_fpkm=t(datExpr0)
filtered_fpkm=data.frame(rownames(filtered_fpkm),filtered_fpkm)
names(filtered_fpkm)[1]="sample"
head(filtered_fpkm)
###'@输出过滤的文件
write.table(filtered_fpkm, file="WGCNA.filter.txt",row.names=F, col.names=T,quote=FALSE,sep="\t")

样本聚类

###'@样本聚类
sampleTree = hclust(dist(datExpr0), method = "average")
pdf("1_sample clutering.pdf", width = 6, height = 4)
par(cex = 0.7);
par(mar = c(0,4,2,0))
plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5,cex.axis = 1.5, cex.main = 2)
dev.off()


样本sample05与整体数据差异较大,过滤此数据。

过滤样本

pdf("2_sample clutering_delete_outliers.pdf", width = 6, height = 4)
plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5, cex.axis = 1.5, cex.main = 2) +abline(h = 1500, col = "red")    ###'@"h = 1500"参数为你需要过滤的参数高度
dev.off()##'@过滤离散样本
##'@"cutHeight"为过滤参数,与上述图保持一致
clust = cutreeStatic(sampleTree, cutHeight = 1500, minSize = 10)
keepSamples = (clust==1)
datExpr = datExpr0[keepSamples, ]
nGenes = ncol(datExpr)
nSamples = nrow(datExpr)


两个样本直接数据比较


载入性状数据

##'@导入csv格式
traitData = read.csv("TraitData.csv",row.names=1)
# ##'@导入txt格式
# traitData = read.table("TraitData.txt",row.names=1,header=T,comment.char = "",check.names=F)
head(traitData)
allTraits = traitData
dim(allTraits)
names(allTraits)
# 形成一个类似于表达数据的数据框架
fpkmSamples = rownames(datExpr)
traitSamples =rownames(allTraits)
traitRows = match(fpkmSamples, traitSamples)
datTraits = allTraits[traitRows,]
rownames(datTraits)
collectGarbage()

Re-cluster samples

# Re-cluster samples
sampleTree2 = hclust(dist(datExpr), method = "average")
# 
traitColors = numbers2colors(datTraits, signed = FALSE)
# Plot the sample dendrogram and the colors underneath.

Sample dendrogram and trait heatmap

#sizeGrWindow(12,12)
pdf(file="3_Sample_dendrogram_and_trait_heatmap.pdf",width=8 ,height= 6)
plotDendroAndColors(sampleTree2, traitColors,groupLabels = names(datTraits),main = "Sample dendrogram and trait heatmap",cex.colorLabels = 1.5, cex.dendroLabels = 1, cex.rowText = 2)
dev.off()


数据处理结束,继续后续网络构建分析!


#'@打开多线程分析
enableWGCNAThreads(5)

获得最佳阈值(softpower)

#'@获得soft阈值
#powers = c(1:30)
powers = c(c(1:10), seq(from = 12, to=30, by=2))
#'@调用网络拓扑分析功能
sft = pickSoftThreshold(datExpr, powerVector = powers, verbose = 5)

绘制softpower图形

#'@绘制soft power plot 
pdf(file="4_软阈值选择.pdf",width=12, height = 8)
par(mfrow = c(1,2))
cex1 = 0.85
# Scale-free topology fit index as a function of the soft-thresholding power
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n",main = paste("Scale independence"));
text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],labels=powers,cex=cex1,col="red");
# this line corresponds to using an R^2 cut-off of h
abline(h=0.8,col="red")
# Mean connectivity as a function of the soft-thresholding power
plot(sft$fitIndices[,1], sft$fitIndices[,5],xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",main = paste("Mean connectivity"))
text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")
dev.off()

详细教程请看:WGCNA分析教程 | 代码四





merge后的图形【我们最终获得图形】


输出模块与基因相关性散点图


输出MM和GS数据

Network heatmap plot



小杜的生信筆記,主要发表或收录生物信息学的教程,以及基于R的分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/117455.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringCloudGateway集成SpringDoc

SpringCloudGateway集成SpringDoc 最近在搞Spring版本升级,按客户要求升级Spring版本,原来用着SpringBoot 2.2.X版本,只需要升级SpringBoot 2.X最新版本也就可以满足客户Spring版本安全要求,可是好像最新的SpringBoot 2.X貌似也不…

Ubuntu入门03——Ubuntu用户操作

1.Ubuntu如何进入root用户 进入ROOT用户的指令: Linux用su命令来切换用户: su root执行命令后,会提示你输入密码,而Ubuntu是没有设置root初始密码的。 若su命令不能切换root,提示su: Authentication failure&#x…

React笔记(三)类组件(1)

一、组件的概念 使用组件方式进行编程,可以提高开发效率,提高组件的复用性、提高代码的可维护性和可扩展性 React定义组件的方式有两种 类组件:React16.8版本之前几乎React使用都是类组件 函数组件:React16.8之后,函数式组件使…

C++面试题(期)-数据库(二)

目录 1.3 事务 1.3.1 说一说你对数据库事务的了解 1.3.2 事务有哪几种类型,它们之间有什么区别? 1.3.3 MySQL的ACID特性分别是怎么实现的? 1.3.4 谈谈MySQL的事务隔离级别 1.3.5 MySQL的事务隔离级别是怎么实现的? 1.3.6 事…

机器学习基础17-基于波士顿房价(Boston House Price)数据集训练模型的整个过程讲解

机器学习是一项经验技能,实践是掌握机器学习、提高利用机器学习 解决问题的能力的有效方法之一。那么如何通过机器学习来解决问题呢? 本节将通过一个实例来一步一步地介绍一个回归问题。 本章主要介绍以下内容: 如何端到端地完成一个回归问题…

笔试题目回忆

&#xff08;1&#xff09;给出n,k&#xff0c;n表示数组个数&#xff0c;k表示要剔除的个数&#xff0c;接下来n个数为数组元素&#xff0c;求剔除k个数之后&#xff0c;其他所有数互为倍数&#xff0c;每个数最多剔除一次。 未检测代码&#xff0c;超时。 #include <ios…

detour编译问题及导入visual studio

Detours是经过微软认证的一个开源Hook库&#xff0c;Detours在GitHub上&#xff0c;网址为 https://github.com/Microsoft/Detours 注意版本不一样的话也是会出问题的&#xff0c;因为我之前是vs2022的所以之前的detours.lib不能使用&#xff0c;必须用对应版本的x64 Native To…

Blender 围绕自身的原点旋转与游标旋转

默认情况下的旋转是&#xff0c;R后旋转是物体自身的原点旋转 可以修改为围绕游标旋转&#xff0c;通过旋转R时 局部与全局坐标 全局的坐标不会变 局部的会随着物体的旋转变化 如果平稳时GZZ会在全局到局部坐标之间切换 或在局部到全局之间的切换 学习视频&#xff1a;【基础…

浅谈 Android Binder 监控方案

在 Android 应用开发中&#xff0c;Binder 可以说是使用最为普遍的 IPC 机制了。我们考虑监控 Binder 这一 IPC 机制&#xff0c;一般是出于以下两个目的&#xff1a; 卡顿优化&#xff1a;IPC 流程完整链路较长&#xff0c;且依赖于其他进程&#xff0c;耗时不可控&#xff0…

【Unity】常见的角色移动旋转

在Unity 3D游戏引擎中&#xff0c;可以使用不同的方式对物体进行旋转。以下是几种常见的旋转方式&#xff1a; 欧拉角&#xff08;Euler Angles&#xff09;&#xff1a;欧拉角是一种常用的旋转表示方法&#xff0c;通过绕物体的 X、Y 和 Z 轴的旋转角度来描述物体的旋转。在Un…

opencv入门-Opencv原理以及Opencv-Python安装

图像的表示 1&#xff0c;位数 计算机采用0/1编码的系统&#xff0c;数字图像也是0/1来记录信息&#xff0c;图像都是8位数图像&#xff0c;包含0~255灰度&#xff0c; 其中0代表最黑&#xff0c;1代表最白 3&#xff0c; 4&#xff0c;OpenCV部署方法 安装OpenCV之前…

HTML+JavaScript+CSS DIY 分隔条splitter

一、需求分析 现在电脑的屏幕越来越大&#xff0c;为了利用好宽屏&#xff0c;我们在设计系统UI时喜欢在左侧放个菜单或选项面板&#xff0c;在右边显示与菜单或选项对应的内容&#xff0c;两者之间用分隔条splitter来间隔&#xff0c;并可以通过拖动分隔条splitter来动态调研…

表白墙程序

目录 一、页面代码部分 二、设计程序 二、实现 doPost​编辑 三、实现 doGet 四、前端代码部分 五、使用数据库存储数据 一、页面代码部分 在之前的一篇博客中&#xff0c;已经写过了表白墙的页面代码实现&#xff0c;这里就不再重复了 页面代码如下&#xff1a; <!…

springboot配置ym管理各种日记(log)

1&#xff1a;yml配置mybatis_plus默认日记框架 mybatis-plus:#这个作用是扫描xml文件生效可以和mapper接口文件使用&#xff0c;#如果不加这个,就无法使用xml里面的sql语句#启动类加了MapperScan是扫描指定包下mapper接口生效&#xff0c;如果不用MapperScan可以在每一个mapp…

[贪心] 拼接最小数

这道题思路并不难&#xff0c;我主要想学习其一些对于字符串的处理。 代码如下&#xff1a; #include <iostream> #include <string> #include <algorithm> using namespace std;const int MAXN 10000; string nums[MAXN];bool cmp(string a, string b) {…

创建ffmpeg vs2019工程

0 写在前面 本文主要参考链接&#xff1a;https://www.cnblogs.com/suiyek/p/15669562.html 感谢作者的付出&#xff1b; 1 目录结构 2 下载yasm和nasm 如果自己在安装VS2019等IDE的时候已经安装了它们&#xff0c;则不用再单独进行安装&#xff0c;比如我这边已经安装了&a…

【Redis从头学-完结】Redis全景思维导图一览!耗时半个月专为Redis初学者打造!

&#x1f9d1;‍&#x1f4bb;作者名称&#xff1a;DaenCode &#x1f3a4;作者简介&#xff1a;CSDN实力新星&#xff0c;后端开发两年经验&#xff0c;曾担任甲方技术代表&#xff0c;业余独自创办智源恩创网络科技工作室。会点点Java相关技术栈、帆软报表、低代码平台快速开…

keras深度学习框架通过简单神经网络实现手写数字识别

背景 keras深度学习框架&#xff0c;并不是一个独立的深度学习框架&#xff0c;它后台依赖tensorflow或者theano。大部分开发者应该使用的是tensorflow。keras可以很方便的像搭积木一样根据模型搭出我们需要的神经网络&#xff0c;然后进行编译&#xff0c;训练&#xff0c;测试…

从AD迁移至AAD,看体外诊断领军企业如何用网络准入方案提升内网安全基线

摘要&#xff1a; 某医用电子跨国集团中国分支机构在由AD向AzureAD Global迁移时&#xff0c;创新使用宁盾网络准入&#xff0c;串联起上海、北京、无锡等国内多个职场与海外总部,实现平滑、稳定、全程无感知的无密码认证入网体验&#xff0c;并通过合规基线检查&#xff0c;确…

2024年java面试--集合篇

文章目录 前言ListSetMapCollectionListSetMapJDK1.7 HashMap&#xff1a;JDK1.8 HashMap&#xff1a; 一、ArrayList和LinkedList的区别二、HashSet的实现原理&#xff1f;三、List接口和Set接口的区别四、hashmap底层实现五、HashTable与HashMap的区别六、线程不安全体现七、…