计算机毕设 基于生成对抗网络的照片上色动态算法设计与实现 - 深度学习 opencv python

文章目录

  • 1 前言
  • 1 课题背景
  • 2 GAN(生成对抗网络)
    • 2.1 简介
    • 2.2 基本原理
  • 3 DeOldify 框架
  • 4 First Order Motion Model
  • 5 最后


1 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于生成对抗网络的照片上色动态算法设计与实现

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

在这里插入图片描述

1 课题背景

随着科技的发展,现在已经没有朋友会再去买胶卷拍照片了。不过对于很多70、80后来说,他们家中还保存着大量之前拍摄的胶卷和老照片。这些老照片是一个时代的记忆,记录着我们生活中的点点滴滴。不过时代发展了,这些老照片的保存和浏览也应该与时俱进。在本期文章中,我们就介绍如何将这些老照片转化为数字照片,更方便大家在电脑或者手机上浏览、保存和回忆。

本项目中我们利用生成对抗网络-GAN和图像动作驱动-First Order Motion Model来给老照片上色并使它动起来。

2 GAN(生成对抗网络)

2.1 简介

**GANs(Generative adversarial networks,对抗式生成网络)**可以把这三个单词拆分理解。

  • Generative:生成式模型
  • Adversarial:采取对抗的策略
  • Networks:网络(不一定是深度学习)

模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D 。

在这里插入图片描述

2.2 基本原理

这里介绍的是原生的GAN算法,虽然有一些不足,但提供了一种生成对抗性的新思路。放心,我这篇博文不会堆一大堆公式,只会提供一种理解思路。

理解GAN的两大护法G和D,生成对抗网络(GAN)由2个重要的部分构成:

  • 生成器(Generator):通过机器生成数据(大部分情况下是图像),负责凭空捏造数据出来,目的是“骗过”判别器
  • 判别器(Discriminator):判断这张图像是真实的还是机器生成的,负责判断数据是不是真数据,目的是找出生成器做的“假数据”

在这里插入图片描述

这样可以简单的看作是两个网络的博弈过程。在最原始的GAN论文里面,G和D都是两个多层感知机网络。首先,注意一点,GAN操作的数据不一定非得是图像数据,不过为了更方便解释,用图像数据为例解释以下GAN:

在这里插入图片描述

tensorflow实现

import tensorflow as tfdef load_dataset(mnist_size, mnist_batch_size, cifar_size, cifar_batch_size,):""" load mnist and cifar10 dataset to shuffle.Args:mnist_size: mnist dataset size.mnist_batch_size: every train dataset of mnist.cifar_size: cifar10 dataset size.cifar_batch_size: every train dataset of cifar10.Returns:mnist dataset, cifar10 dataset"""# load mnist data(mnist_train_images, mnist_train_labels), (_, _) = tf.keras.datasets.mnist.load_data()# load cifar10 data(cifar_train_images, cifar_train_labels), (_, _) = tf.keras.datasets.cifar10.load_data()mnist_train_images = mnist_train_images.reshape(mnist_train_images.shape[0], 28, 28, 1).astype('float32')mnist_train_images = (mnist_train_images - 127.5) / 127.5  # Normalize the images to [-1, 1]cifar_train_images = cifar_train_images.reshape(cifar_train_images.shape[0], 32, 32, 3).astype('float32')cifar_train_images = (cifar_train_images - 127.5) / 127.5  # Normalize the images to [-1, 1]# Batch and shuffle the datamnist_train_dataset = tf.data.Dataset.from_tensor_slices(mnist_train_images)mnist_train_dataset = mnist_train_dataset.shuffle(mnist_size).batch(mnist_batch_size)cifar_train_dataset = tf.data.Dataset.from_tensor_slices(cifar_train_images)cifar_train_dataset = cifar_train_dataset.shuffle(cifar_size).batch(cifar_batch_size)return mnist_train_dataset, cifar_train_dataset

3 DeOldify 框架

本项目中用到的上色就用到了DeOldify 框架,DeOldify 创建的目的是为了给黑白照片上色,但让人惊艳的是它除了能处理图片外,也可以处理视频;

DeOldify 的核心网络框架是 GAN ,对比以前上色技术有以下几个特点:

  • 1,老照片中的伪影在上色过程中会被消除;
  • 2,老照片的人脸部位来说,处理后皮肤会变得更光滑;
  • 3,呈现更详细、真实的渲染效果;

实现过程

准备好权重文件

在这里插入图片描述

相关代码

#部分代码
def deoldify(self,img,render_factor=35):"""风格化"""# 转换通道img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)pil_img = Image.fromarray(img)# 渲染彩图color_img = self.deoldify_model.filter(pil_img, pil_img, render_factor=render_factor,post_process=True)color_img = np.asarray(color_img)color_img = cv2.cvtColor(color_img, cv2.COLOR_RGB2BGR)# 转为numpy图print('deoldify 转换成功')return np.asarray(color_img)

实现效果:

4 First Order Motion Model

First Order Motion model的任务是image animation,给定一张源图片,给定一个驱动视频,生成一段视频,其中主角是源图片,动作是驱动视频中的动作,源图像通常包含一个主体,驱动视频包含一系列动作。

通俗来说,First Order Motion能够将给定的驱动视频中的人物A的动作迁移至给定的源图片中的人物B身上,生成全新的以人物B的脸演绎人物A的表情的视频。

以人脸表情迁移为例,给定一个源人物,给定一个驱动视频,可以生成一个视频,其中主体是源人物,视频中源人物的表情是由驱动视频中的表情所确定的。通常情况下,我们需要对源人物进行人脸关键点标注、进行表情迁移的模型训练。

基本框架

first-order 的算法框架如下图所示,主要包括三个部分的网络,keyporint detector 检测图像中的关键点,以及每个关键点对应的jaccobian矩阵;dense motion network 基于前面的结果生成最终的transform map 以及occulation map;使用transform map 和 occulation map 对编码后的source feature 做变换和mask处理,再decoder 生成出最终的结果。

在这里插入图片描述

本项目相关代码

    def FOM_video(self,driving_video,source_image,result_video):# 读取图片source_image = imageio.imread(source_image)# 读取视频reader = imageio.get_reader(driving_video)fps = reader.get_meta_data()['fps']driving_video = []try:for im in reader:driving_video.append(im)except RuntimeError:passreader.close()# 预处理source_image = resize(source_image, (255, 255))[..., :3]driving_video = [resize(frame, (255, 255))[..., :3] for frame in driving_video]# 推理predictions = self.make_animation(source_image, driving_video, self.fom_generator, self.fom_kp_detector, relative=True, adapt_movement_scale=True, cpu=True)# 保存imageio.mimsave(result_video, [img_as_ubyte(frame) for frame in predictions], fps=fps)driving_video = './images/test2.mp4'
source_image = './images/out2.jpg'
result_video = './putput/result.mp4'
# 图像动起来
gan.FOM_video(driving_video, source_image,result_video)

运行如下命令,实现表情动作迁移。其中,各参数的具体使用说明如下:

  • driving_video: 驱动视频,视频中人物的表情动作作为待迁移的对象。本项目中驱动视频路径为 “work/driving_video.MOV”,大家可以上传自己准备的视频,更换 driving_video 参数对应的路径;
  • source_image: 原始图片,视频中人物的表情动作将迁移到该原始图片中的人物上。这里原始图片路径使用 “work/image.jpeg”,大家可以使用自己准备的图片,更换 source_image 参数对应的路径;
  • relative: 指示程序中使用视频和图片中人物关键点的相对坐标还是绝对坐标,建议使用相对坐标,若使用绝对坐标,会导致迁移后人物扭曲变形;
  • adapt_scale: 根据关键点凸包自适应运动尺度;
  • ratio: 针对多人脸,将框出来的人脸贴回原图时的区域占宽高的比例,默认为0.4,范围为【0.4,0.5】

命令运行成功后会在ouput文件夹生成名为result.mp4的视频文件,该文件即为动作迁移后的视频。

实现效果:

,若使用绝对坐标,会导致迁移后人物扭曲变形;

  • adapt_scale: 根据关键点凸包自适应运动尺度;
  • ratio: 针对多人脸,将框出来的人脸贴回原图时的区域占宽高的比例,默认为0.4,范围为【0.4,0.5】

命令运行成功后会在ouput文件夹生成名为result.mp4的视频文件,该文件即为动作迁移后的视频。

实现效果:

在这里插入图片描述

5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/117722.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CXL.cache H2D/D2H 请求响应对应关系

🔥点击查看精选 CXL 系列文章🔥 🔥点击进入【芯片设计验证】社区,查看更多精彩内容🔥 📢 声明: 🥭 作者主页:【MangoPapa的CSDN主页】。⚠️ 本文首发于CSDN&#xff0c…

CUDA小白 - NPP(3) 图像处理 Color and Sampling Conversion

cuda小白 原始API链接 NPP GPU架构近些年也有不少的变化,具体的可以参考别的博主的介绍,都比较详细。还有一些cuda中的专有名词的含义,可以参考《详解CUDA的Context、Stream、Warp、SM、SP、Kernel、Block、Grid》 常见的NppStatus&#xf…

springboot:时间格式化的5种方法(解决后端传给前端的时间格式转换问题)推荐使用第4和第5种!

本文转载自:springboot:时间格式化的5种方法(解决后端传给前端的时间显示不一致)_为什么前端格式化日期了后端还要格式化_洛泞的博客-CSDN博客 时间问题演示 为了方便演示,我写了一个简单 Spring Boot 项目&#xff…

信息技术01--初/高中--选择真题汇总(197道题)

文章目录 1 真题 01-102 真题 11-203 真题 21-304 真题 31-405 真题 41-506 真题 51-607 真题 61-708 真题 71-809 真题 81-9010 真题 91-10011 真题 101-11012 真题 111-12013 真题 121-13014 真题 131-14015 真题 141-15016 真题 151-16017 真题 161-17018 真题 171-18019 真…

Java运行时jar时终端输出的中文日志是乱码

运行Jar时在控制台输出的中文日志全是乱码,这是因为cmd/bash默认的编码是GBK,只要把cmd的编码改成UTF-8即可 两种方式修改:临时修改和注册表永久修改 临时修改 只对当前的cmd页面有效,关闭后重新打开都会恢复成GBK, 打开cmd&am…

C盘清理 “ProgramData\Microsoft\Search“ 文件夹过大

修改索引存放位置 进入控制面板->查找方式改成大图标, 选择索引选项 进入高级 填写新的索引位置 删除C盘索引信息 删除C:\ProgramData\Microsoft\Search\Data\Applications 下面的文件夹 如果报索引正在使用,参照第一步替换索引位置。关闭索引

泊松回归和地理加权泊松回归

01 泊松回归 泊松回归(Poisson Regression)是一种广义线性模型,用于建立离散型响应变量(计数数据)与一个或多个预测变量之间的关系。它以法国数学家西蒙丹尼泊松(Simon Denis Poisson)的名字命名,适用于计算“事件发生次数”的概率,比如交通事故发生次数、产品缺陷数…

微服务-gateway鉴权

文章目录 一、前言二、gateway鉴权1、依赖配置2、编写代码3、GlobalFilter详解3.1、GlobalFilter简介3.2、GlobalFilter自定义执行顺序3.2.1、实现Order接口实现自定义执行顺序 一、前言 网关是介于客户端和服务器端之间的中间层,所有的外部请求都会先经过 网关这一…

Flutter:getX的学习

前言 学习教程:Getx教程_FlutterGetx系列实战教程 简介 getX是第三方的状态管理插件,不仅具有状态管理的功能,还具有路由管理、主题管理、国际化多语言管理、网络请求、数据验证等功能。相比其他状态管理组件,getX简单、功能强大…

“智越”界限,SSOT上海国际智慧办公展览会来啦

随着人工智能、大数据、云计算等技术的快速发展,目前物联网应用已经从概念踏进规模部署的阶段,场景化和规模化已成常态。传统办公室作为企业行政运营的核心场景,也开始受到“科技办公“移动办公”“共享办公”等非传“智慧办公”概念的影响不…

vscode远程调试php

使用vscode远程调试php的方法 1.安装remote ssh插件 2.连接服务器 可以点击左下角的绿色按钮,或者ctrlshiftp打开命令框输入remote ssh应该也有。 3.在服务器端vscode安装php debug插件 4.安装xdebug xdebug是用来调试php的软件,原本和vscode没什么关…

04、添加 com.fasterxml.jackson.dataformat -- jackson-dataformat-xml 依赖报错

Correct the classpath of your application so that it contains a single, compatible version of com.fasterxml.jackson.dataformat.xml.XmlMapper 解决: 改用其他版本,我没写版本号,springboot自己默认的是 2.11.4 版本 成功启动项目…

DBeaver 23.1.5 发布

导读DBeaver 是一个免费开源的通用数据库工具,适用于开发人员和数据库管理员。DBeaver 23.1.5 现已发布,更新内容如下. Data editor 重新设计了词典查看器面板 UI 空间数据类型:曲线几何线性化已修复 数据保存时结果选项卡关闭的问题已解决…

【LeetCode】剑指 Offer <二刷>(5)

目录 题目:剑指 Offer 10- II. 青蛙跳台阶问题 - 力扣(LeetCode) 题目的接口: 解题思路: 代码: 过啦!!! 题目:剑指 Offer 11. 旋转数组的最小数字 - 力…

超图嵌入论文阅读1:对偶机制非均匀超网络嵌入

超图嵌入论文阅读1:对偶机制非均匀超网络嵌入 原文:Nonuniform Hyper-Network Embedding with Dual Mechanism ——TOIS(一区 CCF-A) 背景 超边:每条边可以连接不确定数量的顶点 我们关注超网络的两个属性&#xff1…

打破数据孤岛!时序数据库 TDengine 与创意物联感知平台完成兼容性互认

新型物联网实现良好建设的第一要务就是打破信息孤岛,将数据汇聚在平台统一处理,实现数据共享,放大物联终端的行业价值,实现系统开放性,以此营造丰富的行业应用环境。在此背景下,物联感知平台应运而生&#…

计算机毕业设计 校园二手交易平台 Vue+SpringBoot+MySQL

作者主页:Designer 小郑 作者简介:Java全栈软件工程师一枚,来自浙江宁波,负责开发管理公司OA项目,专注软件前后端开发、系统定制、远程技术指导。CSDN学院、蓝桥云课认证讲师,全栈领域优质创作者。 项目内容…

uni-app之android离线自定义基座

一 为什么要自定义基座 1,基座其实就是一个app,然后新开发的页面可以直接在手机上面显示,查看效果。 2,默认的基座就是uniapp帮我们打包好的基座app,然后我们可以进行页面的调试。 3,自定义基座主要用来…

【MySQL】4、MySQL备份与恢复

备份的主要目的是灾难恢复,备份还可以测试应用、回滚数据修改、查询历史数据、审计等 MySQL日志管理 MySQL 的日志默认保存位置为 /usr/local/mysql/data #配置文件 vim /etc/my.cnf 日志的分类 常见日志有: 错误日志,一般查询日志&…