使用 ElasticSearch 作为知识库,存储向量及相似性搜索

一、ElasticSearch 向量存储及相似性搜索

在当今大数据时代,快速有效地搜索和分析海量数据成为了许多企业和组织的重要需求。Elasticsearch 作为一款功能强大的分布式搜索和分析引擎,为我们提供了一种优秀的解决方案。除了传统的文本搜索,Elasticsearch 还引入了向量存储的概念,以实现更精确、更高效的相似性搜索。

Elasticsearch 中,我们可以将文档或数据转换为数值化向量的方法存入。每个文档被表示为一个向量,其中每个维度对应于文档中的一个特征或属性。这种向量化的表示使得文档之间的相似性计算变得可能。

使用场景:

  1. 相似文档搜索:通过将文档转换为向量,并使用向量相似性函数,如 dot productcosine similarity,可以快速找到与查询文档最相似的文档,从而实现精确且高效的相似文档搜索。

  2. 推荐系统:将用户和商品等表示为向量,可以根据用户的喜好和行为,推荐与其兴趣相似的商品。

  3. 图像搜索:将图像转换为向量表示,并使用相似性度量,可以在图像库中快速找到与查询图像相似的图像。

下面基于上篇文章使用到的 Chinese-medical-dialogue-data 中文医疗对话数据作为知识内容进行实验。

本篇实验使用 ES 版本为:7.14.0

二、Chinese-medical-dialogue-data 数据集

GitHub 地址如下:

https://github.com/Toyhom/Chinese-medical-dialogue-data

数据分了 6 个科目类型:

在这里插入图片描述

数据格式如下所示:

在这里插入图片描述

其中 ask 为病症的问题描述,answer 为病症的回答。

由于数据较多,本次实验仅使用 IM_内科 数据的前 5000 条数据进行测试。

三、Embedding 模型

Embedding 模型使用开源的 chinese-roberta-wwm-ext-large ,该模型输出为 1024 维。

huggingface 地址:

https://huggingface.co/hfl/chinese-roberta-wwm-ext-large

基本使用如下:

from transformers import BertTokenizer, BertModel
import torch# 模型下载的地址
model_name = 'D:\\AIGC\\model\\chinese-roberta-wwm-ext-large'def embeddings(docs, max_length=300):tokenizer = BertTokenizer.from_pretrained(model_name)model = BertModel.from_pretrained(model_name)# 对文本进行分词、编码和填充input_ids = []attention_masks = []for doc in docs:encoded_dict = tokenizer.encode_plus(doc,add_special_tokens=True,max_length=max_length,padding='max_length',truncation=True,return_attention_mask=True,return_tensors='pt')input_ids.append(encoded_dict['input_ids'])attention_masks.append(encoded_dict['attention_mask'])input_ids = torch.cat(input_ids, dim=0)attention_masks = torch.cat(attention_masks, dim=0)# 前向传播with torch.no_grad():outputs = model(input_ids, attention_mask=attention_masks)# 提取最后一层的CLS向量作为文本表示last_hidden_state = outputs.last_hidden_statecls_embeddings = last_hidden_state[:, 0, :]return cls_embeddingsif __name__ == '__main__':res = embeddings(["你好,你叫什么名字"])print(res)print(len(res))print(len(res[0]))

运行后可以看到如下日志:

在这里插入图片描述

四、ElasticSearch 存储向量

创建向量索引

PUT http://127.0.0.1:9200/medical_index
{"settings": {"number_of_shards": 3,"number_of_replicas": 1},"mappings": {"properties": {"ask_vector": {  "type": "dense_vector",  "dims": 1024  },"ask": {  "type": "text","analyzer": "ik_max_word","search_analyzer": "ik_smart"},"answer": {  "type": "text","analyzer": "ik_max_word","search_analyzer": "ik_smart"}}}
}

其中 dims 为向量的长度。

在这里插入图片描述

查看创建的索引:

GET http://127.0.0.1:9200/medical_index

在这里插入图片描述

数据存入 ElasticSearch

引入 ElasticSearch 依赖库:

pip install elasticsearch -i https://pypi.tuna.tsinghua.edu.cn/simple
from elasticsearch import Elasticsearch
from transformers import BertTokenizer, BertModel
import torch
import pandas as pddef embeddings_doc(doc, tokenizer, model, max_length=300):encoded_dict = tokenizer.encode_plus(doc,add_special_tokens=True,max_length=max_length,padding='max_length',truncation=True,return_attention_mask=True,return_tensors='pt')input_id = encoded_dict['input_ids']attention_mask = encoded_dict['attention_mask']# 前向传播with torch.no_grad():outputs = model(input_id, attention_mask=attention_mask)# 提取最后一层的CLS向量作为文本表示last_hidden_state = outputs.last_hidden_statecls_embeddings = last_hidden_state[:, 0, :]return cls_embeddings[0]def add_doc(index_name, id, embedding_ask, ask, answer, es):body = {"ask_vector": embedding_ask.tolist(),"ask": ask,"answer": answer}result = es.create(index=index_name, id=id, doc_type="_doc", body=body)return resultdef main():# 模型下载的地址model_name = 'D:\\AIGC\\model\\chinese-roberta-wwm-ext-large'# ES 信息es_host = "http://127.0.0.1"es_port = 9200es_user = "elastic"es_password = "elastic"index_name = "medical_index"# 数据地址path = "D:\\AIGC\\dataset\\Chinese-medical-dialogue-data\\Chinese-medical-dialogue-data\\Data_数据\\IM_内科\\内科5000-33000.csv"# 分词器和模型tokenizer = BertTokenizer.from_pretrained(model_name)model = BertModel.from_pretrained(model_name)# ES 连接es = Elasticsearch([es_host],port=es_port,http_auth=(es_user, es_password))# 读取数据写入ESdata = pd.read_csv(path, encoding='ANSI')for index, row in data.iterrows():# 写入前 5000 条进行测试if index >= 500:breakask = row["ask"]answer = row["answer"]# 文本转向量embedding_ask = embeddings_doc(ask, tokenizer, model)result = add_doc(index_name, index, embedding_ask, ask, answer, es)print(result)if __name__ == '__main__':main()

在这里插入图片描述

五、相似性搜索

1. 余弦相似度算法:cosineSimilarity

from elasticsearch import Elasticsearch
from transformers import BertTokenizer, BertModel
import torchdef embeddings_doc(doc, tokenizer, model, max_length=300):encoded_dict = tokenizer.encode_plus(doc,add_special_tokens=True,max_length=max_length,padding='max_length',truncation=True,return_attention_mask=True,return_tensors='pt')input_id = encoded_dict['input_ids']attention_mask = encoded_dict['attention_mask']# 前向传播with torch.no_grad():outputs = model(input_id, attention_mask=attention_mask)# 提取最后一层的CLS向量作为文本表示last_hidden_state = outputs.last_hidden_statecls_embeddings = last_hidden_state[:, 0, :]return cls_embeddings[0]def search_similar(index_name, query_text, tokenizer, model, es, top_k=3):query_embedding = embeddings_doc(query_text, tokenizer, model)print(query_embedding.tolist())query = {"query": {"script_score": {"query": {"match_all": {}},"script": {"source": "cosineSimilarity(params.queryVector, 'ask_vector') + 1.0","lang": "painless","params": {"queryVector": query_embedding.tolist()}}}},"size": top_k}res = es.search(index=index_name, body=query)hits = res['hits']['hits']similar_documents = []for hit in hits:similar_documents.append(hit['_source'])return similar_documentsdef main():# 模型下载的地址model_name = 'D:\\AIGC\\model\\chinese-roberta-wwm-ext-large'# ES 信息es_host = "http://127.0.0.1"es_port = 9200es_user = "elastic"es_password = "elastic"index_name = "medical_index"# 分词器和模型tokenizer = BertTokenizer.from_pretrained(model_name)model = BertModel.from_pretrained(model_name)# ES 连接es = Elasticsearch([es_host],port=es_port,http_auth=(es_user, es_password))query_text = "我有高血压可以拿党参泡水喝吗"similar_documents = search_similar(index_name, query_text, tokenizer, model, es)for item in similar_documents:print("================================")print('ask:', item['ask'])print('answer:', item['answer'])if __name__ == '__main__':main()

打印日志如下:

在这里插入图片描述

================================
ask: 我有高血压这两天女婿来的时候给我拿了些党参泡水喝,您好高血压可以吃党参吗?
answer: 高血压病人可以口服党参的。党参有降血脂,降血压的作用,可以彻底消除血液中的垃圾,从而对冠心病以及心血管疾病的患者都有一定的稳定预防工作作用,因此平时口服党参能远离三高的危害。另外党参除了益气养血,降低中枢神经作用,调整消化系统功能,健脾补肺的功能。感谢您的进行咨询,期望我的解释对你有所帮助。
================================
ask: 我准备过两天去看我叔叔,顺便带些人参,但是他有高血压,您好人参高血压可以吃吗?
answer: 人参有一定的调压作用,主要用来气虚体虚的患者,如果有气血不足,气短乏力,神经衰弱,神经衰弱健忘等不适症状的话,可以适当口服人参调养身体,但是对于高血压的病人,如果长期食用人参的话,可能会对血压引发一定影响,所以,比较好到医院中医科实施辨证论治调治,看如何适合食用人参。
================================
ask: 我妈妈有点高血压,比较近我朋友送了我一些丹参片,我想知道高血压能吃丹参片吗?
answer: 丹参片具备活血化瘀打通血管的作用可以致使血液粘稠度减低,所以就容易致使血管内血液供应便好防止出现血液粘稠,致使血压下降,所以对降血压是有一定帮助的,高血压患者是经常使用丹参片实施治疗的。可以预防,因为血液粘稠引来的冠心病心绞痛以及外周血管脑水肿症状。

2. 点积算法:dotProduct

计算给定查询向量和文档向量之间的点积度量。

from elasticsearch import Elasticsearch
from transformers import BertTokenizer, BertModel
import torchdef embeddings_doc(doc, tokenizer, model, max_length=300):encoded_dict = tokenizer.encode_plus(doc,add_special_tokens=True,max_length=max_length,padding='max_length',truncation=True,return_attention_mask=True,return_tensors='pt')input_id = encoded_dict['input_ids']attention_mask = encoded_dict['attention_mask']# 前向传播with torch.no_grad():outputs = model(input_id, attention_mask=attention_mask)# 提取最后一层的CLS向量作为文本表示last_hidden_state = outputs.last_hidden_statecls_embeddings = last_hidden_state[:, 0, :]return cls_embeddings[0]def search_similar(index_name, query_text, tokenizer, model, es, top_k=3):query_embedding = embeddings_doc(query_text, tokenizer, model)print(query_embedding.tolist())query = {"query": {"script_score": {"query": {"match_all": {}},"script": {"source": "dotProduct(params.queryVector, 'ask_vector')+1.0","lang": "painless","params": {"queryVector": query_embedding.tolist()}}}},"size": top_k}res = es.search(index=index_name, body=query)hits = res['hits']['hits']similar_documents = []for hit in hits:similar_documents.append(hit['_source'])return similar_documentsdef main():# 模型下载的地址model_name = 'D:\\AIGC\\model\\chinese-roberta-wwm-ext-large'# ES 信息es_host = "http://127.0.0.1"es_port = 9200es_user = "elastic"es_password = "elastic"index_name = "medical_index"# 分词器和模型tokenizer = BertTokenizer.from_pretrained(model_name)model = BertModel.from_pretrained(model_name)# ES 连接es = Elasticsearch([es_host],port=es_port,http_auth=(es_user, es_password))query_text = "我有高血压可以拿党参泡水喝吗"similar_documents = search_similar(index_name, query_text, tokenizer, model, es)for item in similar_documents:print("================================")print('ask:', item['ask'])print('answer:', item['answer'])if __name__ == '__main__':main()

在这里插入图片描述

================================
ask: 我有高血压这两天女婿来的时候给我拿了些党参泡水喝,您好高血压可以吃党参吗?
answer: 高血压病人可以口服党参的。党参有降血脂,降血压的作用,可以彻底消除血液中的垃圾,从而对冠心病以及心血管疾病的患者都有一定的稳定预防工作作用,因此平时口服党参能远离三高的危害。另外党参除了益气养血,降低中枢神经作用,调整消化系统功能,健脾补肺的功能。感谢您的进行咨询,期望我的解释对你有所帮助。
================================
ask: 我准备过两天去看我叔叔,顺便带些人参,但是他有高血压,您好人参高血压可以吃吗?
answer: 人参有一定的调压作用,主要用来气虚体虚的患者,如果有气血不足,气短乏力,神经衰弱,神经衰弱健忘等不适症状的话,可以适当口服人参调养身体,但是对于高血压的病人,如果长期食用人参的话,可能会对血压引发一定影响,所以,比较好到医院中医科实施辨证论治调治,看如何适合食用人参。
================================
ask: 我妈妈有点高血压,比较近我朋友送了我一些丹参片,我想知道高血压能吃丹参片吗?
answer: 丹参片具备活血化瘀打通血管的作用可以致使血液粘稠度减低,所以就容易致使血管内血液供应便好防止出现血液粘稠,致使血压下降,所以对降血压是有一定帮助的,高血压患者是经常使用丹参片实施治疗的。可以预防,因为血液粘稠引来的冠心病心绞痛以及外周血管脑水肿症状。

3. L1曼哈顿距离:l1norm

计算给定查询向量和文档向量之间的L1距离。

from elasticsearch import Elasticsearch
from transformers import BertTokenizer, BertModel
import torchdef embeddings_doc(doc, tokenizer, model, max_length=300):encoded_dict = tokenizer.encode_plus(doc,add_special_tokens=True,max_length=max_length,padding='max_length',truncation=True,return_attention_mask=True,return_tensors='pt')input_id = encoded_dict['input_ids']attention_mask = encoded_dict['attention_mask']# 前向传播with torch.no_grad():outputs = model(input_id, attention_mask=attention_mask)# 提取最后一层的CLS向量作为文本表示last_hidden_state = outputs.last_hidden_statecls_embeddings = last_hidden_state[:, 0, :]return cls_embeddings[0]def search_similar(index_name, query_text, tokenizer, model, es, top_k=3):query_embedding = embeddings_doc(query_text, tokenizer, model)print(query_embedding.tolist())query = {"query": {"script_score": {"query": {"match_all": {}},"script": {"source": "1 / (1 + l1norm(params.queryVector, doc['ask_vector']))","lang": "painless","params": {"queryVector": query_embedding.tolist()}}}},"size": top_k}res = es.search(index=index_name, body=query)hits = res['hits']['hits']similar_documents = []for hit in hits:similar_documents.append(hit['_source'])return similar_documentsdef main():# 模型下载的地址model_name = 'D:\\AIGC\\model\\chinese-roberta-wwm-ext-large'# ES 信息es_host = "http://127.0.0.1"es_port = 9200es_user = "elastic"es_password = "elastic"index_name = "medical_index"# 分词器和模型tokenizer = BertTokenizer.from_pretrained(model_name)model = BertModel.from_pretrained(model_name)# ES 连接es = Elasticsearch([es_host],port=es_port,http_auth=(es_user, es_password))query_text = "我有高血压可以拿党参泡水喝吗"similar_documents = search_similar(index_name, query_text, tokenizer, model, es)for item in similar_documents:print("================================")print('ask:', item['ask'])print('answer:', item['answer'])if __name__ == '__main__':main()

在这里插入图片描述

================================
ask: 我有高血压这两天女婿来的时候给我拿了些党参泡水喝,您好高血压可以吃党参吗?
answer: 高血压病人可以口服党参的。党参有降血脂,降血压的作用,可以彻底消除血液中的垃圾,从而对冠心病以及心血管疾病的患者都有一定的稳定预防工作作用,因此平时口服党参能远离三高的危害。另外党参除了益气养血,降低中枢神经作用,调整消化系统功能,健脾补肺的功能。感谢您的进行咨询,期望我的解释对你有所帮助。
================================
ask: 我准备过两天去看我叔叔,顺便带些人参,但是他有高血压,您好人参高血压可以吃吗?
answer: 人参有一定的调压作用,主要用来气虚体虚的患者,如果有气血不足,气短乏力,神经衰弱,神经衰弱健忘等不适症状的话,可以适当口服人参调养身体,但是对于高血压的病人,如果长期食用人参的话,可能会对血压引发一定影响,所以,比较好到医院中医科实施辨证论治调治,看如何适合食用人参。
================================
ask: 我妈妈有点高血压,比较近我朋友送了我一些丹参片,我想知道高血压能吃丹参片吗?
answer: 丹参片具备活血化瘀打通血管的作用可以致使血液粘稠度减低,所以就容易致使血管内血液供应便好防止出现血液粘稠,致使血压下降,所以对降血压是有一定帮助的,高血压患者是经常使用丹参片实施治疗的。可以预防,因为血液粘稠引来的冠心病心绞痛以及外周血管脑水肿症状。

4. l2 欧几里得距离:l2norm

计算给定查询向量和文档向量之间的欧几里德距离。

from elasticsearch import Elasticsearch
from transformers import BertTokenizer, BertModel
import torchdef embeddings_doc(doc, tokenizer, model, max_length=300):encoded_dict = tokenizer.encode_plus(doc,add_special_tokens=True,max_length=max_length,padding='max_length',truncation=True,return_attention_mask=True,return_tensors='pt')input_id = encoded_dict['input_ids']attention_mask = encoded_dict['attention_mask']# 前向传播with torch.no_grad():outputs = model(input_id, attention_mask=attention_mask)# 提取最后一层的CLS向量作为文本表示last_hidden_state = outputs.last_hidden_statecls_embeddings = last_hidden_state[:, 0, :]return cls_embeddings[0]def search_similar(index_name, query_text, tokenizer, model, es, top_k=3):query_embedding = embeddings_doc(query_text, tokenizer, model)print(query_embedding.tolist())query = {"query": {"script_score": {"query": {"match_all": {}},"script": {"source": "1 / (1 + l2norm(params.queryVector, doc['ask_vector']))","lang": "painless","params": {"queryVector": query_embedding.tolist()}}}},"size": top_k}res = es.search(index=index_name, body=query)hits = res['hits']['hits']similar_documents = []for hit in hits:similar_documents.append(hit['_source'])return similar_documentsdef main():# 模型下载的地址model_name = 'D:\\AIGC\\model\\chinese-roberta-wwm-ext-large'# ES 信息es_host = "http://127.0.0.1"es_port = 9200es_user = "elastic"es_password = "elastic"index_name = "medical_index"# 分词器和模型tokenizer = BertTokenizer.from_pretrained(model_name)model = BertModel.from_pretrained(model_name)# ES 连接es = Elasticsearch([es_host],port=es_port,http_auth=(es_user, es_password))query_text = "我有高血压可以拿党参泡水喝吗"similar_documents = search_similar(index_name, query_text, tokenizer, model, es)for item in similar_documents:print("================================")print('ask:', item['ask'])print('answer:', item['answer'])if __name__ == '__main__':main()

在这里插入图片描述

================================
ask: 我有高血压这两天女婿来的时候给我拿了些党参泡水喝,您好高血压可以吃党参吗?
answer: 高血压病人可以口服党参的。党参有降血脂,降血压的作用,可以彻底消除血液中的垃圾,从而对冠心病以及心血管疾病的患者都有一定的稳定预防工作作用,因此平时口服党参能远离三高的危害。另外党参除了益气养血,降低中枢神经作用,调整消化系统功能,健脾补肺的功能。感谢您的进行咨询,期望我的解释对你有所帮助。
================================
ask: 我准备过两天去看我叔叔,顺便带些人参,但是他有高血压,您好人参高血压可以吃吗?
answer: 人参有一定的调压作用,主要用来气虚体虚的患者,如果有气血不足,气短乏力,神经衰弱,神经衰弱健忘等不适症状的话,可以适当口服人参调养身体,但是对于高血压的病人,如果长期食用人参的话,可能会对血压引发一定影响,所以,比较好到医院中医科实施辨证论治调治,看如何适合食用人参。
================================
ask: 我妈妈有点高血压,比较近我朋友送了我一些丹参片,我想知道高血压能吃丹参片吗?
answer: 丹参片具备活血化瘀打通血管的作用可以致使血液粘稠度减低,所以就容易致使血管内血液供应便好防止出现血液粘稠,致使血压下降,所以对降血压是有一定帮助的,高血压患者是经常使用丹参片实施治疗的。可以预防,因为血液粘稠引来的冠心病心绞痛以及外周血管脑水肿症状。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/117854.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【大数据模型】让chatgpt为开发增速(开发专用提示词)

汝之观览,吾之幸也!本文主要聊聊怎样才能更好的使用提示词,给开发提速,大大缩减我们的开发时间,比如在开发中使用生成表结构脚本的提示词,生成代码的提示词等等。 一、准备 本文主要根据Claude进行演示&am…

maven的依赖下载不下来的几种解决方法

前言 每次部署测试环境,从代码库拉取代码,都会出现缺少包的情况。然后找开发一通调试,到处拷包。 方案一:pom文件注释/取消注释 注释掉pom.xml里的报红色的依赖(同时可以把本地maven库repo里对应的包删除)&…

大数据项目实战(Sqoop安装)

一,搭建大数据集群环境 1.4 Sqoop安装 1.sqoop安装 (1)上传安装包 (2)解压安装包 tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /export/servers (3)重命名 mv sqoop-1.4.6.b…

mysql通过.frm和.ibd 文件恢复数据库

问题背景:由于强制在服务关闭mysql导致部分数据表以及数据丢失 如下图只有.frm .ibd的文件为我的问题文件 查找不到表结构和表数据目录D:XXXX\mysql-5.7.24-winx64\data\mydata 从frm文件中恢复表结构 先把原来的数据备份一次 避免过程中出错 先备份之前数据的.fr…

PHP8内置函数中的数学函数-PHP8知识详解

php8中提供了大量的内置函数,以便程序员直接使用常见的内置函数包括数学函数、变量函数、字符串函数、时间和日期函数等。今天介绍内置函数中的数学函数。 本文讲到了数学函数中的随机数函数rand()、舍去法取整函数floor()、向上取整函数 ceil()、对浮点数进行四舍…

C++面试题(丝)-计算机网络部分(1)

目录 1计算机网络 53 简述epoll和select的区别,epoll为什么高效? 54 说说多路IO复用技术有哪些,区别是什么? 55 简述socket中select,epoll的使用场景和区别,epoll水平触发与边缘触发的区别?…

排序算法学习

总体概况 参考自:https://github.com/hustcc/JS-Sorting-Algorithm 排序算法是《数据结构与算法》中最基本的算法之一。 排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大&#xff0c…

python的观察者模式案例

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言二、具体代码写在结尾 前言 最近写安卓的代码比较多,了解了java代码的注册回调机制,也就是观察者模式,搜索了一下python也有…

04_22 vma(进程下的每个虚拟内存区域查看)对象实战

前言 vma不太懂的可以往前翻 03_008内存映射原理_虚拟内存区域vm_area_struct详解,和mmap系统钓调用及物理内存结构体完全分析 vam 虚拟内存区域 每个进程下有多个vma 这次是查看每个vma的起始地址 结束地址和大小使用 1.进程在用户空间调用mmap也就是上面那个函数。 2.在当前…

UE4 植物生长

这个可以改变SplineMesh朝向

使用Visual Studio 2022实现透明按钮和标签、POPUP样式窗体的一种工业系统的UI例程

例程实现的功能说明 1、主窗体采用POPUP样式,无标题栏、无菜单栏,适合工业类软件 2、按钮、标签使用自绘,实现透明样式,可以实现灵活的样式设计,更具设计感 按钮重绘函数:OnDrawItem()按钮样式设定&#…

深入探讨梯度下降:优化机器学习的关键步骤(二)

文章目录 🍀引言🍀eta参数的调节🍀sklearn中的梯度下降 🍀引言 承接上篇,这篇主要有两个重点,一个是eta参数的调解;一个是在sklearn中实现梯度下降 在梯度下降算法中,学习率&#xf…

Redis之管道解读

目录 基本介绍 使用例子 管道对比 管道与原生批量命令对比 管道与事务对比 使用pipeline注意事项 基准测试 基本介绍 Redis是一种基于客户端-服务端模型以及请求/响应协议的TCP服务器。 这意味着请求通常按如下步骤处理: 客户端发送一个请求到服务器&am…

Redis功能实战篇之附近商户

在互联网的app当中,特别是像美团,饿了么等app。经常会看到附件美食或者商家, 当我们点击美食之后,会出现一系列的商家,商家中可以按照多种排序方式,我们此时关注的是距离,这个地方就需要使用到我…

已解决module ‘pip‘ has no attribute ‘pep425tags‘报错问题(如何正确查看pip版本、支持、32位、64位方法汇总)

本文摘要:本文已解决module ‘pip‘ has no attribute ‘pep425tags‘的相关报错问题,并总结提出了几种可用解决方案。同时结合人工智能GPT排除可能得隐患及错误。并且最后说明了如何正确查看pip版本、支持、32位、64位方法汇总 😎 作者介绍&…

【051】基于Vue、Springboot电商管理系统(含源码、详细论文、数据库)

基于Vue、Springboot、Mysql的前后端分离的电商管理系统,不仅功能完善,还有详细课设报告供查看,这不收藏起来,源码和论文获取见文末结尾 部分报告内容如下(省略图片) c 目录 1 引言 4 1.…

java-数组

数组静态初始化写法: //静态初始化数组 int[] age new int[] {7,18,19}; double[] scores new double[]{67.5,77.8,94.2,99};//静态初始化数组简化写法 int[] age1 {7,18,19}; double[] scores2 {67.5,77.8,94.2,99};数组在内存中定义方式: 1.在内…

paddle 1-高级

目录 为什么要精通深度学习的高级内容 高级内容包含哪些武器 1. 模型资源 2. 设计思想与二次研发 3. 工业部署 4. 飞桨全流程研发工具 5. 行业应用与项目案例 飞桨开源组件使用场景概览 框架和全流程工具 1. 模型训练组件 2. 模型部署组件 3. 其他全研发流程的辅助…

POSTGRESQL WAL 日志问题合集之WAL 如何解析

开头还是介绍一下群,如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis 等有问题,有需求都可以加群群内有各大数据库行业大咖,CTO,可以解决你的问题。加群请加 liuaustin3微信号 ,在新加的朋友会分到3群 &#xf…

C语言入门 Day_12 一维数组

目录 前言 1.创建一维数组 2.使用一维数组 3.易错点 4.思维导图 前言 存储一个数据的时候我们可以使用变量, 比如这里我们定义一个记录语文考试分数的变量chinese_score,并给它赋值一个浮点数(float)。 float chinese_scoe…