【100天精通Python】Day52:Python 数据分析_Numpy入门基础与数组操作

目录

1  NumPy 基础概述

1.1 NumPy的主要特点和功能

1.2 NumPy 安装和导入

2 Numpy 数组

2.1 创建NumPy数组

2.2 数组的形状和维度

2.3 数组的数据类型

2.4 访问和修改数组元素

3 数组操作

3.1 数组运算

3.2 数学函数

3.3 统计函数

4 数组形状操作

4.1 重塑数组形状

4.2 数组的转置

4.3 数组展平

4.4 改变数组的大小

4.5 堆叠数组

4.6 拆分数组


1  NumPy 基础概述

        NumPy(Numerical Python)是Python中用于数值计算的核心库之一。它提供了多维数组对象(称为ndarray),以及用于在这些数组上执行各种数学、逻辑、统计和线性代数操作的函数。NumPy是数据科学、机器学习、科学计算和工程领域的重要工具,它的设计目标是提供高性能、灵活性和易用性的数值计算工具。

1.1 NumPy的主要特点和功能

  1. 多维数组对象(ndarray):NumPy的核心数据结构是ndarray,这是一个类似于列表的多维数组,但具有以下特点:

    • 所有元素必须是相同数据类型。
    • 数组的形状可以是任意的,可以是一维、二维、三维等。
    • 数组的元素可以通过索引和切片访问。
  2. 高性能计算:NumPy的数组操作在底层是使用高度优化的C语言实现的,因此能够以非常高效的方式执行数值计算。这使得NumPy成为处理大规模数据集的首选工具。

  3. 广泛的数学函数:NumPy提供了丰富的数学函数,包括基本的算术操作、三角函数、指数和对数、统计函数、线性代数函数等。

  4. 随机数生成:NumPy包含随机数生成器,用于生成随机数和随机数组。这对于模拟和随机实验非常有用。

  5. 广播功能:NumPy允许您在不同形状的数组之间进行操作,通过广播功能,使得这些操作能够自动适应不同形状的数组,而无需显式编写循环。

  6. 文件输入输出:NumPy支持多种文件格式的读写,包括文本文件、二进制文件和NumPy的自定义二进制格式。

  7. 线性代数运算:NumPy提供了一组丰富的线性代数函数,如矩阵乘法、逆矩阵、特征值分解、奇异值分解等。

  8. 数据分析和科学计算:NumPy通常与其他库(如Pandas、SciPy和Matplotlib)一起使用,以进行数据分析、科学计算、数据可视化等任务。

  9. 开源和社区支持:NumPy是开源项目,拥有庞大的用户和开发者社区,因此您可以轻松获得文档、教程和支持。

        总之,NumPy是Python中不可或缺的库,它为数值计算提供了强大的工具,使得在Python中进行科学计算和数据分析变得更加方便和高效。如果您在数据科学、工程或科学研究方面工作,学习和掌握NumPy是非常重要的一步。您可以通过安装NumPy并查阅其官方文档来开始使用它。

 Numpy 官方手册:NumPy user guide — NumPy v1.25 Manualicon-default.png?t=N7T8https://numpy.org/doc/stable/user/index.html#user

1.2 NumPy 安装和导入

在使用NumPy之前,需要先安装它。您可以使用以下命令通过pip安装NumPy:

(1)用conda安装:

# Best practice, use an environment rather than install in the base env
conda create -n my-env
conda activate my-env
# If you want to install from conda-forge
conda config --env --add channels conda-forge
# The actual install command
conda install numpy

(2)用pip安装:

pip install numpy

安装完成后,您可以在Python中导入NumPy:

import numpy as np

        通常,人们将NumPy导入为np,以简化代码中的引用。 现在,您已经准备好开始使用NumPy进行数值计算了。

2 Numpy 数组

2.1 创建NumPy数组

使用np.array()函数可以从Python列表或元组创建NumPy数组:

# 创建一个一维数组
arr1 = np.array([1, 2, 3, 4, 5])# 创建一个二维数组
arr2 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

2.2 数组的形状和维度

NumPy数组具有形状(shape)和维度(dimension),可以使用以下属性获取:

shape = arr.shape  # 形状,返回 (5,) 表示一维数组
dim = arr.ndim    # 维度,返回 1 表示一维数组

2.3 数组的数据类型

每个NumPy数组都有一个数据类型,可以使用dtype属性查看:

dtype = arr.dtype  # 返回数组的数据类型,如int64

2.4 访问和修改数组元素

您可以使用索引和切片来访问和修改数组的元素

element = arr[2]       # 获取索引为2的元素,值为3
sub_array = arr[1:4]   # 获取索引1到3的元素,结果为[2, 3, 4]
arr[0] = 10            # 修改索引0的元素为10

3 数组操作

3.1 数组运算

        NumPy支持对数组执行各种数学运算,例如加法、减法、乘法和除法。这些运算是按元素执行的:

import numpy as nparr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])# 加法
result_addition = arr1 + arr2  # [5, 7, 9]# 减法
result_subtraction = arr1 - arr2  # [-3, -3, -3]# 乘法
result_multiplication = arr1 * arr2  # [4, 10, 18]# 除法
result_division = arr1 / arr2  # [0.25, 0.4, 0.5]

3.2 数学函数

NumPy提供了丰富的数学函数,您可以对整个数组或数组的元素进行操作。以下是一些示例:

import numpy as np# 数组用于演示数学函数的功能
arr = np.array([0, 1, 2, 3, 4, 5])# 计算指数函数
exp_values = np.exp(arr)
# exp_values 现在包含了arr中每个元素的e的幂次方结果# 计算自然对数函数(对数的逆函数)
log_values = np.log(arr + 1)
# 这里使用(arr + 1)来避免对0进行对数运算,因为对数函数不定义于0# 计算平方根
sqrt_values = np.sqrt(arr)
# sqrt_values 现在包含了arr中每个元素的平方根# 计算正弦函数
sin_values = np.sin(arr)
# sin_values 包含arr中每个元素的正弦值# 计算余弦函数
cos_values = np.cos(arr)
# cos_values 包含arr中每个元素的余弦值# 计算反正弦函数
asin_values = np.arcsin(arr / 5)
# asin_values 包含arr中每个元素的反正弦值# 计算反余弦函数
acos_values = np.arccos(arr / 5)
# acos_values 包含arr中每个元素的反余弦值# 计算四舍五入的整数值
round_values = np.round(arr / 2)
# round_values 包含arr中每个元素除以2并四舍五入后的整数值

具体示例:

import numpy as np# 求绝对值
absolute_value = np.abs([-1, -2, 3])  # [1 2 3]# 计算平方根
sqrt_value = np.sqrt([4, 9, 16])  # [2. 3. 4.]# 计算指数函数
exp_value = np.exp([1, 2, 3])  # [ 2.71828183  7.3890561  20.08553692]# 计算自然对数
log_value = np.log([1, 10, 100])  # [0. 2.30258509 4.60517019]# 计算以2为底的对数
log2_value = np.log2([1, 2, 4])  # [0. 1. 2.]# 计算以10为底的对数
log10_value = np.log10([1, 10, 100])  # [0. 1. 2.]# 计算幂函数
power_value = np.power([2, 3, 4], [2, 3, 2])  # [ 4 27 16]# 计算三角函数
sin_value = np.sin(np.pi / 2)  # 1.0
cos_value = np.cos(np.pi)  # -1.0# 计算反三角函数
arcsin_value = np.arcsin(1)  # 1.5707963267948966
arccos_value = np.arccos(0)  # 1.5707963267948966# 计算正切函数
tan_value = np.tan(np.pi / 4)  # 0.9999999999999999# 计算反正切函数
arctan_value = np.arctan(1)  # 0.7853981633974483# 计算双曲正弦函数
sinh_value = np.sinh(1)  # 1.1752011936438014# 计算双曲余弦函数
cosh_value = np.cosh(1)  # 1.5430806348152437# 计算双曲正切函数
tanh_value = np.tanh(1)  # 0.7615941559557649# 计算双曲反正弦函数
arcsinh_value = np.arcsinh(1)  # 0.881373587019543# 计算双曲反余弦函数
arccosh_value = np.arccosh(2)  # 1.3169578969248166# 计算双曲反正切函数
arctanh_value = np.arctanh(0.5)  # 0.5493061443340548# 计算四舍五入
round_value = np.round([1.2, 2.7, 3.5])  # [1. 3. 4.]# 计算向上取整
ceil_value = np.ceil([1.2, 2.7, 3.5])  # [2. 3. 4.]# 计算向下取整
floor_value = np.floor([1.2, 2.7, 3.5])  # [1. 2. 3.]

        以上是一系列NumPy中数学函数的示例,包括绝对值、平方根、指数函数、自然对数、以2为底的对数、以10为底的对数、幂函数、三角函数、反三角函数、双曲函数、反双曲函数、四舍五入、向上取整和向下取整。这些函数允许您执行各种数学运算和变换,对数据进行处理和分析。

3.3 统计函数

        NumPy提供了各种统计函数,可以帮助您分析数组的统计属性,如均值、总和、最大值和最小值等。以下是示例:

import numpy as np# 创建一个示例数组
data = np.array([1, 2, 2, 3, 3, 3, 4, 4, 4, 4])# 计算平均值
mean = np.mean(data)  # 平均值为 3.0# 计算中位数
median = np.median(data)  # 中位数为 3.0# 计算众数
from scipy import stats
mode = stats.mode(data)  # 众数为 ModeResult(mode=array([4]), count=array([4]))# 计算标准差
std_deviation = np.std(data)  # 标准差为 1.118033988749895# 计算方差
variance = np.var(data)  # 方差为 1.25# 计算最小值和最大值
min_value = np.min(data)  # 最小值为 1
max_value = np.max(data)  # 最大值为 4# 计算百分位数
percentile_25 = np.percentile(data, 25)  # 25th 百分位数为 2.25
percentile_75 = np.percentile(data, 75)  # 75th 百分位数为 3.75# 计算数据范围
data_range = np.ptp(data)  # 数据范围为 3# 计算数据的四分位距
iqr = np.percentile(data, 75) - np.percentile(data, 25)  # 四分位距为 1.5# 计算数据的和
total_sum = np.sum(data)  # 总和为 30# 计算累积和
cumulative_sum = np.cumsum(data)  # [ 1  3  5  8 11 14 18 22 26 30]# 计算累积积
cumulative_product = np.cumprod(data)  # [     1      2      4     12     36    108    432   1728   6912  27648]# 计算均方根(Root Mean Square)
rms = np.sqrt(np.mean(np.square(data)))  # 均方根为 2.160246899469287# 计算协方差矩阵
data1 = np.array([1, 2, 3, 4, 5])
data2 = np.array([5, 4, 3, 2, 1])
covariance_matrix = np.cov(data1, data2)  # 结果是一个协方差矩阵# 计算相关系数
correlation_coefficient = np.corrcoef(data1, data2)  # 结果是相关系数矩阵

示例演示了如何使用NumPy中的统计函数来计算各种统计量,包括平均值、中位数、众数、标准差、方差、最小值、最大值、百分位数、数据范围、四分位距、总和、累积和、累积积、均方根、协方差矩阵和相关系数。这些函数对于数据分析非常有用。

4 数组形状操作

4.1 重塑数组形状

        重塑数组的形状是常见的操作,特别是在与不同形状的数据进行操作时。使用reshape()函数可以改变数组的形状,但请注意新形状的元素数量必须与原始数组相同。

4.2 数组的转置

        数组的转置操作是将数组的行和列进行交换。您可以使用.T属性来获取数组的转置。

4.3 数组展平

        展平数组意味着将多维数组转换为一维数组。您可以使用ravel()函数或flatten()函数来实现这一目标。

4.4 改变数组的大小

        使用resize()函数可以改变数组的大小,不需要考虑新形状与原始数组的元素数量是否兼容。如果新数组大于原始数组,多余的元素将被填充0。

4.5 堆叠数组

        堆叠数组是将多个数组按垂直或水平方向堆叠在一起。您可以使用vstack()函数垂直堆叠和hstack()函数水平堆叠数组。

4.6 拆分数组

        拆分数组是将一个数组拆分成多个子数组。使用split()函数可以按指定位置拆分数组。

以上示例代码:

import numpy as np# 创建一个示例数组
arr = np.array([[1, 2, 3],[4, 5, 6]])# 1. 重塑数组形状 (reshape)
# 用于改变数组的形状,返回一个新的视图。
reshaped = arr.reshape(3, 2)
# 结果为:
# [[1 2]
#  [3 4]
#  [5 6]]# 2. 数组的转置 (T属性)
# 返回原始数组的转置,即交换行和列。
transposed = arr.T
# 结果为:
# [[1 4]
#  [2 5]
#  [3 6]]# 3. 改变数组的大小 (resize)
# 允许调整数组的大小,可以增加或减少元素的数量。
resized = np.resize(arr, (2, 4))
# 结果为:
# [[1 2 3 4]
#  [5 6 1 2]]# 4. 数组连接 (vstack, hstack)
# vstack用于垂直堆叠多个数组,hstack用于水平堆叠多个数组。
arr1 = np.array([1, 2])
arr2 = np.array([3, 4])
vertical_stack = np.vstack((arr1, arr2))
# 结果为:
# [[1 2]
#  [3 4]]horizontal_stack = np.hstack((arr1, arr2))
# 结果为:
# [1 2 3 4]# 5. 拆分数组 (split)
# 用于将一个数组拆分为多个子数组,可以指定拆分的位置。
split_arr = np.split(arr, 2)
# 在索引2处拆分数组,结果为两个子数组:
# 子数组1: [[1 2 3]]
# 子数组2: [[4 5 6]]# 6. 数组展平 (ravel, flatten)
# ravel和flatten函数用于将多维数组展平为一维数组。
flattened = arr.ravel()
# 结果为一维数组: [1 2 3 4 5 6]# 可以使用flatten()函数进行展平,效果相同:
flattened_using_flatten = arr.flatten()# 7. 更改数组的维度 (ndarray.shape)
# 使用数组的shape属性来直接更改数组的形状。
arr.shape = (3, 2)
# 这会将数组的形状更改为3x2。# 8. 调整数组的大小 (resize)
# resize函数也可用于调整数组的大小,但可以指定refcheck参数以避免数据损失。
resized = np.resize(arr, (2, 4), refcheck=False)
# 结果为:
# [[1 2 3 4]
#  [5 6 1 2]]

        这些数组形状操作在数据预处理、图像处理、机器学习、科学计算等领域都有广泛的应用。它们使得在处理不同形式和维度的数据时更加灵活,并且可以使数据适应不同的算法和任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/117899.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nvm安装electron开发与编译环境

electron总是安装失败,下面说一下配置办法 下载软件 nvm npmmirror 镜像站 安装nvm 首先最好卸载node,不卸载的话,安装nvm会提示是否由其接管,保险起见还是卸载 下载win中的安装包 配置加速节点nvm node_mirror https://npmmi…

Java 中数据结构LinkedList的用法

LinkList 链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的地址。 链表可分为单向链表和双向链表。 一个单向链表包含两个值: 当前节点…

PATH系统环境变量配置教程【图文步骤】

开发Java程序,需要使用JDK提供的开发工具(比如javac.exe、java.exe等命令),而这些工具在JDK的安装目录的 bin目录下,如果不配置环境变量,那么这些命令只可以在该目录下执行。我们不可能把所有的java文件都放到JDK 的bin目录下&…

​7.3 项目3 贪吃蛇(控制台版) (A)​

C自学精简实践教程 目录(必读) 主要考察 模块划分 / 文本文件读取 UI与业务分离 / 模块划分 控制台交互 / 数据抽象 需求 用户输入字母表示方向,实现贪吃蛇游戏 规则:碰到边缘和碰到蛇自己都算游戏结束 输入文件 data.txt data.txt 内容如下&am…

MySQL数据库备份及恢复

数据备份的重要性 1、备份的主要目的是灾难恢复 2、在生产环境中,数据的安全性至关重要 3、任何数据的丢失都可能产生严重的后果 4、造成数据丢失的原因 备份类型(重点) 1、物理备份 数据库备份可以分为物理备份和逻辑备份。物理备份是对数据库操作系统的物…

kafka详解一

kafka详解一 1、消息引擎背景 根据维基百科的定义,消息引擎系统是一组规范。企业利用这组规范在不同系统之间传递语义准确的消息,实现松耦合的异步式数据传递. 即:系统 A 发送消息给消息引擎系统,系统 B 从消息引擎系统中读取 A…

城市白模三维重建

收费工具,学生党勿扰,闹眼子当勿扰 收费金额:2000元,不能开发票 1 概述 几个月前,一家小公司找我帮忙给他们开发一个程序,可以将一个城市进行白模的三维重建。 报酬大约5K。经过不懈的努力,终于…

分布式集群——搭建Hadoop环境以及相关的Hadoop介绍

系列文章目录 分布式集群——jdk配置与zookeeper环境搭建 分布式集群——搭建Hadoop环境以及相关的Hadoop介绍 文章目录 前言 一 hadoop的相关概念 1.1 Hadoop概念 补充:块的存储 1.2 HDFS是什么 1.3 三种节点的功能 I、NameNode节点 II、fsimage与edits…

国产工业软件的挑战与机遇:风口是否还在燃烧?

随着智能制造与数字化转型等新型工业理念的推广,工业软件在工业领域中的地位日益重要。在这个过程中,国产工业软件也迎来了新的发展机遇。然而,对于国产工业软件而言,是否存在着发展的“风口”?今天,我们将…

【C++技能树】继承概念与解析

Halo,这里是Ppeua。平时主要更新C,数据结构算法,Linux与ROS…感兴趣就关注我bua! 继承 0. 继承概念0.1 继承访问限定符 1. 基类和派生类对象赋值兼容转换2. 继承中的作用域3. 派生类中的默认成员函数4.友元5.继承中的静态成员6.菱…

如何飞速成为开源贡献者(Contributor)

如何飞速成为开源贡献者Contributor 一、环境信息1.1 硬件信息1.2 软件信息 二、Git安装2.1 Git介绍2.2 Git下载安装 三、开源项目选定四、GitHub参与开源流程4.1 Fork项目4.2 SSH配置4.2.1 为什么要配置SSH4.2.2 如何配置SSH 4.3 Clone项目4.4 IDEA关联4.5 PR生成4.6 PR提交 一…

STM32f103入门(9)编码器接口测速

TIM3 PA6 PA7 上拉输入 原理上也是PWM捕获输入 捕获两个输入 我们用中断处理读取CNT的值 读取完将CNT置0 这样我们就得到了旋转编码器的速度/s 中断配置代码 #include "stm32f10x.h" // Device headervoid Timer_Init(void) {RCC_APB1PeriphClockC…

SWAT-MODFLOW地表水与地下水耦合

耦合模型被应用到很多科学和工程领域来改善模型的性能、效率和结果,SWAT作为一个地表水模型可以较好的模拟主要的水文过程,包括地表径流、降水、蒸发、风速、温度、渗流、侧向径流等,但是对于地下水部分的模拟相对粗糙,考虑到SWAT…

com.google.guava:guava 组件安全漏洞及健康分析

组件简介 维护者google组织许可证类型Apache-2.0首次发布2010 年 4 月 26 日最新发布时间2023 年 8 月 1 日GitHub Star48189GitHub Fork10716依赖包28,694依赖存储库219,576 Guava 是 Google 的一组核心 Java 库,其中包括新的集合类型(例如 multimap 和…

Web安全——穷举爆破上篇(仅供学习)

Web安全 一、概述二、常见的服务1、burpsuite 穷举后台密码2、burpsuite 对 webshell 穷举破解密码3、有 token 防御的网站后台穷举破解密码3.1 burpsuite 设置宏获取 token 对网站后台密码破解3.2 编写脚本获取token 对网站后台密码破解 4、针对有验证码后台的穷举方法4.1 coo…

ElasticSearch安装为Win11服务

在windows的环境下操作是Elasticsearch,并且喜欢使用命令行 ,启动时通过cmd直接在elasticsearch的bin目录下执行elasticsearch ,这样直接启动的话集群名称会默elasticsearch,节点名称会随机生成。 停止就直接在cmd界面按CtrlC 其实我们也可以将elasticse…

一篇文章教会你什么是二叉搜索树

二叉搜索树 二叉搜索树概念二叉搜索树操作1.二叉搜索树的查找2.二叉搜索树的插入3.二叉搜索树的删除4.二叉搜索树的遍历 二叉搜索树的实现1.二叉搜索树节点结构2.二叉搜索树类3.二叉搜索树的构造及析构4.二叉搜索树的拷贝构造及赋值重载5.二叉搜索树插入6.二叉搜索树查找7.二叉…

必读干货!独立站新手卖家常见十大问题解答

新手卖家入局跨境电商独立站,会考虑到很多问题,从网站到产品再到售卖最终的发货。而且卖家普遍对独立站存在认知不全的问题,门槛高、推广难、转化难是最初印象。 那独立站该怎么开始,如何下手?今天整理并解答独立站新…

数据结构--树4.2.2(二叉树--遍历)

目录 一、二叉树的建立 二、二叉树的遍历算法 一、二叉树的建立 CreateBitree(Bitree *t){char c;scanf("%c",&c);if( c){*t NULL;}else{*t(Bitnode*)malloc(sizeof(Bitnode));(*t)->data c;CreateBitree(&(*t)->lchild);CreateBitree(&(*t)-&…

Mybatis学习|注解开发、lombok

1.使用注解开发 无需再编写相应的Mapper.xml文件,直接将sql用注解的形式写在Mapper接口的对应方法上即可。 然后因为没有xml文件,所以要在mybatis-config.xml核心配置文件中注册这个Mapper接口,而不用去注册之前的Mapper.xml,这里其实如果用…