Lesson6---案例:人脸案例

学习目标

  1. 了解opencv进行人脸检测的流程
  2. 了解Haar特征分类器的内容

1 基础

我们使用机器学习的方法完成人脸检测,首先需要大量的正样本图像(面部图像)和负样本图像(不含面部的图像)来训练分类器。我们需要从其中提取特征。下图中的 H a a r Haar Haar 特征会被使用,就像我们的卷积核,每一个特征是一 个值,这个值等于黑色矩形中的像素值之后减去白色矩形中的像素值之和。

在这里插入图片描述
H a a r Haar Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。

H a a r Haar Haar特征可用于于图像任意位置,大小也可以任意改变,所以矩形特征值是矩形模版类别、矩形位置和矩形大小这三个因素的函数。故类别、大小和位置的变化,使得很小的检测窗口含有非常多的矩形特征。

在这里插入图片描述

得到图像的特征后,训练一个决策树构建的 a d a b o o s t adaboost adaboost级联决策器来识别是否为人脸。

在这里插入图片描述

2.实现

OpenCV中自带已训练好的检测器,包括面部,眼睛,猫脸等,都保存在XML文件中,我们可以通过以下程序找到他们:

import cv2 as cv
print(cv.__file__)

找到的文件如下所示:
在这里插入图片描述
那我们就利用这些文件来识别人脸,眼睛等。检测流程如下:

  1. 读取图片,并转换成灰度图

  2. 实例化人脸和眼睛检测的分类器对象

# 实例化级联分类器
classifier =cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
# 加载分类器
classifier.load('haarcascade_frontalface_default.xml')
  1. 进行人脸和眼睛的检测
rect = classifier.detectMultiScale(gray, scaleFactor, minNeighbors, minSize,maxsize)

参数:

  • Gray: 要进行检测的人脸图像
  • scaleFactor: 前后两次扫描中,搜索窗口的比例系数
  • minneighbors:目标至少被检测到minNeighbors次才会被认为是目标
  • minsizemaxsize: 目标的最小尺寸和最大尺寸
    将检测结果绘制出来就可以了。

主程序如下所示:

import cv2 as cv
import matplotlib.pyplot as plt
# 1.以灰度图的形式读取图片
img = cv.imread("16.jpg")
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)# 2.实例化OpenCV人脸和眼睛识别的分类器 
face_cas = cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
face_cas.load('haarcascade_frontalface_default.xml')eyes_cas = cv.CascadeClassifier("haarcascade_eye.xml")
eyes_cas.load("haarcascade_eye.xml")# 3.调用识别人脸 
faceRects = face_cas.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)) 
for faceRect in faceRects: x, y, w, h = faceRect # 框出人脸 cv.rectangle(img, (x, y), (x + h, y + w),(0,255,0), 3) # 4.在识别出的人脸中进行眼睛的检测roi_color = img[y:y+h, x:x+w]roi_gray = gray[y:y+h, x:x+w]eyes = eyes_cas.detectMultiScale(roi_gray) for (ex,ey,ew,eh) in eyes:cv.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
# 5. 检测结果的绘制
plt.figure(figsize=(8,6),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title('检测结果')
plt.xticks([]), plt.yticks([])
plt.show()

结果:
在这里插入图片描述

我们也可在视频中对人脸进行检测:

import cv2 as cv
import matplotlib.pyplot as plt
# 1.读取视频
cap = cv.VideoCapture("movie.mp4")
# 2.在每一帧数据中进行人脸识别
while(cap.isOpened()):ret, frame = cap.read()if ret==True:gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)# 3.实例化OpenCV人脸识别的分类器 face_cas = cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) face_cas.load('haarcascade_frontalface_default.xml')# 4.调用识别人脸 faceRects = face_cas.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)) for faceRect in faceRects: x, y, w, h = faceRect # 框出人脸 cv.rectangle(frame, (x, y), (x + h, y + w),(0,255,0), 3) cv.imshow("frame",frame)if cv.waitKey(1) & 0xFF == ord('q'):break
# 5. 释放资源
cap.release()  
cv.destroyAllWindows()

总结

opencv中人脸识别的流程是:

  1. 读取图片,并转换成灰度图

  2. 实例化人脸和眼睛检测的分类器对象

# 实例化级联分类器
classifier =cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
# 加载分类器
classifier.load('haarcascade_frontalface_default.xml')
  1. 进行人脸和眼睛的检测
rect = classifier.detectMultiScale(gray, scaleFactor, minNeighbors, minSize,maxsize)
  1. 将检测结果绘制出来就可以了。

我们也可以在视频中进行人脸识别

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/118358.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++学习笔记总结练习:多态与虚函数

1 多态 多态分类 静态多态,是只在编译期间确定的多态。静态多态在编译期间,根据函数参数的个数和类型推断出调用的函数。静态多态有两种实现的方式 重载。(函数重载)模板。 动态多态,是运行时多态。通过虚函数机制实…

详细介绍如何基于ESP32实现低功耗的电子纸天气显示器--附完整源码

实现界面展示 这是一款天气显示器,由支持 wifi 的 ESP32 微控制器和 7.5 英寸电子纸(又名电子墨水)显示器供电。当前和预测的天气数据是从 OpenWeatherMap API 获取的。传感器为显示屏提供准确的室内温度和湿度。 该项目在睡眠时消耗约 14μA,在约 10 秒的清醒期…

MATLAB制图代码【第二版】

MATLAB制图代码【第二版】 文档描述 Code describtion: This code is version 2 used for processing the data from the simulation and experiment. Time : 2023.9.3 Author: PEZHANG 这是在第一版基础上,迭代出的第二版MATLAB制图代码,第二版的特点是…

不同路径 II【动态规划】

不同路径 II 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。 现在考虑网格中有障碍物。那么从左上…

NOR型flash vs NAND型flash

FLASH是一种存储芯片,全名叫Flash EEPROM Memory,通过程序可以修改数据,即平时所说的“闪存”。 闪存可以在软件的控制下写入和擦写数据。其存储空间被分割成相对较大的可擦除单元,成为擦除块(erase block&#xff09…

没有使用sniffer dongle在windows抓包蓝牙方法分享

网上很多文章都是介绍买一个sniffer dongle来抓蓝牙数据,嫌麻烦又费钱,目前找到一个好方法,不需要sniffer就可以抓蓝牙数据过程,现分享如下: (1)在我资源附件找到相关安装包或者查看如下链接 https://learn.microsoft.com/zh-cn/windows-hardware/drivers/bluetooth/testing-bt…

Doris架构中包含哪些技术?

Doris主要整合了Google Mesa(数据模型),Apache Impala(MPP Query Engine)和Apache ORCFile (存储格式,编码和压缩)的技术。 为什么要将这三种技术整合? Mesa可以满足我们许多存储需求的需求,但是Mesa本身不提供SQL查询引擎。 Impala是一个…

Docker技术--Docker中的网络问题

1.docker中的网络通信 如果想要弄清楚docker中的网络通信问题,其实需要弄清楚这几个问题就可以:容器与容器之间的通信、容器与外部网络之间的通信、外部网络与容器之间的通信。 -a:容器与容器之间的通信,如下所示: 在默认情况下,docker使用网桥(Bridge模式)与NAT通信。这…

攻防世界-Caesar

原题 解题思路 没出现什么特殊字符,可能是个移位密码。凯撒密码加密解密。偏移12位就行。

MyBatis-Plus —— 初窥门径

前言 在前面的文章中荔枝梳理了MyBatis及相关的操作,作为MyBatis的增强工具,MyBatis-Plus无需再在xml中写sql语句,在这篇文章中荔枝将梳理MyBatis-Plus的基础知识并基于SpringBoot梳理MyBatis-Plus给出的两个接口:BaseMapper和ISe…

机器学习之 Jupyter Notebook 使用

🎈 作者:Linux猿 🎈 简介:CSDN博客专家🏆,华为云享专家🏆,Linux、C/C、云计算、物联网、面试、刷题、算法尽管咨询我,关注我,有问题私聊! &…

容器技术Linux Namespaces和Cgroups

对操作系统了解多少,仅仅敲个命令吗 操作系统虚拟化(容器技术)的发展历程 1979 年,UNIX 的第 7 个版本引入了 Chroot 特性。Chroot 现在被认为是第一个操作系统虚拟化(Operating system level virtualization&#x…

Linux系统编程5(线程概念详解)

线程同进程一样都是OS中非常重要的部分,线程的应用场景非常的广泛,试想我们使用的视频软件,在网络不是很好的情况下,通常会采取下载的方式,现在你很想立即观看,又想下载,于是你点击了下载并且在…

LLM - LLaMA-2 获取文本向量并计算 Cos 相似度

目录 一.引言 二.获取文本向量 1.hidden_states 与 last_hidden_states ◆ hidden_states ◆ last_hidden_states 2.LLaMA-2 获取 hidden_states ◆ model config ◆ get Embedding 三.获取向量 Cos 相似度 1.向量选择 2.Cos 相似度 3.BERT-whitening 特征白化 …

centos安装nginx实操记录(加安全配置)

1.下载与安装 yum -y install nginx2.启动命令 /usr/sbin/nginx -c /etc/nginx/nginx.conf3.新建配置文件 cd /etc/nginx/conf.d vim index.conf配了一个负责均衡,如不需要,可将 server localhost: 多余的去掉 upstream web_server{server localhost…

软件测试/测试开发丨Selenium 高级定位 CSS

点此获取更多相关资料 本文为霍格沃兹测试开发学社学员学习笔记分享 原文链接:https://ceshiren.com/t/topic/27022 一、CSS选择器概念 CSS拥有自己的语法规则和表达式 CSS通常分为相对定位和绝对定位 CSS常和XPATH一起用于UI自动化测试 二、CSS相对定位使用场景 支…

webpack(一)模块化

模块化演变过程 阶段一:基于文件的划分模块方式 概念:将每个功能和相关数据状态分别放在单独的文件里 约定每一个文件就是一个单独的模块,使用每个模块,直接调用这个模块的成员 缺点:所有的成员都可以在模块外被访问和…

百度搜索清理大量低质量网站

我是卢松松,点点上面的头像,欢迎关注我哦! 据部分站长爆料:百度大规模删低质量网站的百度资源站长平台权限,很多网站都被删除了百度站长资源平台后台权限,以前在百度后台添加的网站大量被删除!…

vue左侧漏斗切换 echart图表动态更新

这个需求是根据点击左侧的箭头部分&#xff0c;右侧图表切换&#xff0c;左侧选中数据高亮&#xff08;图片用的svg&#xff09; 一、效果图 二、vue组件 <template><div class"funnel_wrap"><div class"flex_between"><div class&q…

[机器学习]分类算法系列①:初识概念

目录 1、概念 2、数据集介绍与划分 2.1、数据集的划分 2.2、sklearn数据集介绍 2.2.1、API 2.2.2、分类和回归数据集 分类数据集 回归数据集 返回类型 3、sklearn转换器和估计器 3.1、转换器 三种方法的区别 3.2、估计器 3.2.1、简介 3.2.2、API 3.3、工作流程 …