【Apollo学习笔记】——规划模块TASK之RULE_BASED_STOP_DECIDER

文章目录

  • 前言
  • RULE_BASED_STOP_DECIDER相关配置
  • RULE_BASED_STOP_DECIDER总体流程
    • StopOnSidePass
      • CheckClearDone
      • CheckSidePassStop
      • IsPerceptionBlocked
      • IsClearToChangeLane
      • CheckSidePassStop
      • BuildStopDecision
      • ELSE:涉及到的一些其他函数
        • NormalizeAngle
        • SelfRotate
    • CheckLaneChangeUrgency
    • AddPathEndStop
  • 参考

前言

在Apollo星火计划学习笔记——Apollo路径规划算法原理与实践与【Apollo学习笔记】——Planning模块讲到……Stage::Process的PlanOnReferenceLine函数会依次调用task_list中的TASK,本文将会继续以LaneFollow为例依次介绍其中的TASK部分究竟做了哪些工作。由于个人能力所限,文章可能有纰漏的地方,还请批评斧正。

modules/planning/conf/scenario/lane_follow_config.pb.txt配置文件中,我们可以看到LaneFollow所需要执行的所有task。

stage_config: {stage_type: LANE_FOLLOW_DEFAULT_STAGEenabled: truetask_type: LANE_CHANGE_DECIDERtask_type: PATH_REUSE_DECIDERtask_type: PATH_LANE_BORROW_DECIDERtask_type: PATH_BOUNDS_DECIDERtask_type: PIECEWISE_JERK_PATH_OPTIMIZERtask_type: PATH_ASSESSMENT_DECIDERtask_type: PATH_DECIDERtask_type: RULE_BASED_STOP_DECIDERtask_type: SPEED_BOUNDS_PRIORI_DECIDERtask_type: SPEED_HEURISTIC_OPTIMIZERtask_type: SPEED_DECIDERtask_type: SPEED_BOUNDS_FINAL_DECIDERtask_type: PIECEWISE_JERK_SPEED_OPTIMIZER# task_type: PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZERtask_type: RSS_DECIDER

本文将继续介绍LaneFollow的第8个TASK——RULE_BASED_STOP_DECIDER

基于规则的停止决策是规划模块的任务,属于task中的decider类别。基于规则的停止决策根据一些规则来设置停止标志。

RULE_BASED_STOP_DECIDER相关配置

modules/planning/conf/planning_config.pb.txt

default_task_config: {task_type: RULE_BASED_STOP_DECIDERrule_based_stop_decider_config {max_adc_stop_speed: 0.5max_valid_stop_distance: 1.0search_beam_length: 20.0search_beam_radius_intensity: 0.08search_range: 3.14is_block_angle_threshold: 0.5}
}

modules/planning/proto/task_config.proto

// RuleBasedStopDeciderConfigmessage RuleBasedStopDeciderConfig {optional double max_adc_stop_speed = 1 [default = 0.3];optional double max_valid_stop_distance = 2 [default = 0.5];optional double search_beam_length = 3 [default = 5.0];optional double search_beam_radius_intensity = 4 [default = 0.08];optional double search_range = 5 [default = 3.14];optional double is_block_angle_threshold = 6 [default = 1.57];optional double approach_distance_for_lane_change = 10 [default = 80.0];optional double urgent_distance_for_lane_change = 11 [default = 50.0];
}

RULE_BASED_STOP_DECIDER总体流程

在这里插入图片描述

  • 输入
    apollo::common::Status RuleBasedStopDecider::Process(Frame *const frame, ReferenceLineInfo *const reference_line_info)
    输入是frame和reference_line_info。

  • 输出
    输出保存到reference_line_info中。

代码流程及框架
Process中的代码流程如下图所示。

在这里插入图片描述

apollo::common::Status RuleBasedStopDecider::Process(Frame *const frame, ReferenceLineInfo *const reference_line_info) {// 1. Rule_based stop for side pass onto reverse laneStopOnSidePass(frame, reference_line_info);// 2. Rule_based stop for urgent lane changeif (FLAGS_enable_lane_change_urgency_checking) {CheckLaneChangeUrgency(frame);}// 3. Rule_based stop at path end positionAddPathEndStop(frame, reference_line_info);return Status::OK();
}

主要核心的函数就是StopOnSidePassCheckLaneChangeUrgency以及AddPathEndStop,接着分别对三者进行剖析。

StopOnSidePass

在这里插入图片描述
在这里插入图片描述

void RuleBasedStopDecider::StopOnSidePass(Frame *const frame, ReferenceLineInfo *const reference_line_info) {static bool check_clear;// 默认falsestatic common::PathPoint change_lane_stop_path_point;// 获取path dataconst PathData &path_data = reference_line_info->path_data();double stop_s_on_pathdata = 0.0;// 找到"self"类型的路径,returnif (path_data.path_label().find("self") != std::string::npos) {check_clear = false;change_lane_stop_path_point.Clear();return;}// CheckClearDone:Check if needed to check clear again for side pass// 如果check_clear为true,且CheckClearDone成功。设置check_clear为falseif (check_clear &&CheckClearDone(*reference_line_info, change_lane_stop_path_point)) {check_clear = false;}// CheckSidePassStop:Check if necessary to set stop fence used for nonscenario side pass// 如果check_clear为false,CheckSidePassStop为trueif (!check_clear &&CheckSidePassStop(path_data, *reference_line_info, &stop_s_on_pathdata)) {// 如果障碍物没有阻塞且可以换道,直接returnif (!LaneChangeDecider::IsPerceptionBlocked(*reference_line_info,rule_based_stop_decider_config_.search_beam_length(),rule_based_stop_decider_config_.search_beam_radius_intensity(),rule_based_stop_decider_config_.search_range(),rule_based_stop_decider_config_.is_block_angle_threshold()) &&LaneChangeDecider::IsClearToChangeLane(reference_line_info)) {return;}// 检查adc是否停在了stop fence前,否返回trueif (!CheckADCStop(path_data, *reference_line_info, stop_s_on_pathdata)) {// 设置stop fence,成功就执行 check_clear = true;if (!BuildSidePassStopFence(path_data, stop_s_on_pathdata,&change_lane_stop_path_point, frame,reference_line_info)) {AERROR << "Set side pass stop fail";}} else {if (LaneChangeDecider::IsClearToChangeLane(reference_line_info)) {check_clear = true;}}}
}

CheckClearDone

// Check if needed to check clear again for side pass
bool RuleBasedStopDecider::CheckClearDone(const ReferenceLineInfo &reference_line_info,const common::PathPoint &stop_point) {// 获取ADC的SL坐标const double adc_front_edge_s = reference_line_info.AdcSlBoundary().end_s();const double adc_back_edge_s = reference_line_info.AdcSlBoundary().start_s();const double adc_start_l = reference_line_info.AdcSlBoundary().start_l();const double adc_end_l = reference_line_info.AdcSlBoundary().end_l();double lane_left_width = 0.0;double lane_right_width = 0.0;reference_line_info.reference_line().GetLaneWidth((adc_front_edge_s + adc_back_edge_s) / 2.0, &lane_left_width,&lane_right_width);SLPoint stop_sl_point;// 获取停止点的SL坐标reference_line_info.reference_line().XYToSL(stop_point, &stop_sl_point);// use distance to last stop point to determine if needed to check clear// againif (adc_back_edge_s > stop_sl_point.s()) {if (adc_start_l > -lane_right_width || adc_end_l < lane_left_width) {return true;}}return false;
}

CheckSidePassStop

// @brief Check if necessary to set stop fence used for nonscenario side pass
bool RuleBasedStopDecider::CheckSidePassStop(const PathData &path_data, const ReferenceLineInfo &reference_line_info,double *stop_s_on_pathdata) {const std::vector<std::tuple<double, PathData::PathPointType, double>>&path_point_decision_guide = path_data.path_point_decision_guide();// 初始化类型PathData::PathPointType last_path_point_type =PathData::PathPointType::UNKNOWN;// 遍历 path_point_decision_guidefor (const auto &point_guide : path_point_decision_guide) {// 若上一点在车道内,这一点在逆行车道上if (last_path_point_type == PathData::PathPointType::IN_LANE &&std::get<1>(point_guide) ==PathData::PathPointType::OUT_ON_REVERSE_LANE) {*stop_s_on_pathdata = std::get<0>(point_guide);// Approximate the stop fence s based on the vehicle positionconst auto &vehicle_config =common::VehicleConfigHelper::Instance()->GetConfig();const double ego_front_to_center =vehicle_config.vehicle_param().front_edge_to_center();common::PathPoint stop_pathpoint;// 获取stop pointif (!path_data.GetPathPointWithRefS(*stop_s_on_pathdata,&stop_pathpoint)) {AERROR << "Can't get stop point on path data";return false;}const double ego_theta = stop_pathpoint.theta();Vec2d shift_vec{ego_front_to_center * std::cos(ego_theta),ego_front_to_center * std::sin(ego_theta)};// stop_fence的位置const Vec2d stop_fence_pose =shift_vec + Vec2d(stop_pathpoint.x(), stop_pathpoint.y());double stop_l_on_pathdata = 0.0;const auto &nearby_path = reference_line_info.reference_line().map_path();nearby_path.GetNearestPoint(stop_fence_pose, stop_s_on_pathdata,&stop_l_on_pathdata);return true;}last_path_point_type = std::get<1>(point_guide);}return false;
}

IsPerceptionBlocked

参数解释:

search_beam_length 扫描长度
search_beam_radius_intensity 扫描间隔
search_range 依据ADC中心的扫描范围
is_block_angle_threshold 筛选障碍物所占角度大小的阈值

bool LaneChangeDecider::IsPerceptionBlocked(const ReferenceLineInfo& reference_line_info,const double search_beam_length, const double search_beam_radius_intensity,const double search_range, const double is_block_angle_threshold) {// search_beam_length: 20.0 //is the length of scanning beam// search_beam_radius_intensity: 0.08 //is the resolution of scanning// search_range: 3.14 	//is the scanning range centering at ADV heading// is_block_angle_threshold: 0.5 //is the threshold to tell how big a block angle range is perception blocking// 获取车辆状态、位置、航向角const auto& vehicle_state = reference_line_info.vehicle_state();const common::math::Vec2d adv_pos(vehicle_state.x(), vehicle_state.y());const double adv_heading = vehicle_state.heading();// 遍历障碍物for (auto* obstacle :reference_line_info.path_decision().obstacles().Items()) {// NormalizeAngle将给定的角度值规范化到一个特定的范围内(-π到π之间)double left_most_angle =common::math::NormalizeAngle(adv_heading + 0.5 * search_range);double right_most_angle =common::math::NormalizeAngle(adv_heading - 0.5 * search_range);bool right_most_found = false;// 跳过虚拟障碍物if (obstacle->IsVirtual()) {ADEBUG << "skip one virtual obstacle";continue;}// 获取障碍物多边形const auto& obstacle_polygon = obstacle->PerceptionPolygon();// 按角度进行搜索for (double search_angle = 0.0; search_angle < search_range;search_angle += search_beam_radius_intensity) {common::math::Vec2d search_beam_end(search_beam_length, 0.0);const double beam_heading = common::math::NormalizeAngle(adv_heading - 0.5 * search_range + search_angle);// search_beam_end绕adv_pos旋转beam_heading角度search_beam_end.SelfRotate(beam_heading);search_beam_end += adv_pos;// 构造线段common::math::LineSegment2d search_beam(adv_pos, search_beam_end);// 判断最右边界是否找到,并更新右边界角度if (!right_most_found && obstacle_polygon.HasOverlap(search_beam)) {right_most_found = true;right_most_angle = beam_heading;}// 如果最右边界已找到,且障碍物的感知多边形与搜索光束无重叠,则更新左边界角度并跳出循环。if (right_most_found && !obstacle_polygon.HasOverlap(search_beam)) {left_most_angle = beam_heading;break;}}// 如果最右边界未找到,则继续处理下一个障碍物。(说明该障碍物不在搜索范围内)if (!right_most_found) {// obstacle is not in search rangecontinue;}// 判断阈值,过滤掉小的障碍物if (std::fabs(common::math::NormalizeAngle(left_most_angle - right_most_angle)) > is_block_angle_threshold) {return true;}}return false;
}

IsClearToChangeLane

这个在【Apollo学习笔记】——规划模块TASK之LANE_CHANGE_DECIDER已经有过介绍。

CheckSidePassStop

// @brief Check if necessary to set stop fence used for nonscenario side pass
bool RuleBasedStopDecider::CheckSidePassStop(const PathData &path_data, const ReferenceLineInfo &reference_line_info,double *stop_s_on_pathdata) {const std::vector<std::tuple<double, PathData::PathPointType, double>>&path_point_decision_guide = path_data.path_point_decision_guide();// 初始化类型PathData::PathPointType last_path_point_type =PathData::PathPointType::UNKNOWN;// 遍历 path_point_decision_guidefor (const auto &point_guide : path_point_decision_guide) {// 若上一点在车道内,这一点在逆行车道上if (last_path_point_type == PathData::PathPointType::IN_LANE &&std::get<1>(point_guide) ==PathData::PathPointType::OUT_ON_REVERSE_LANE) {*stop_s_on_pathdata = std::get<0>(point_guide);// Approximate the stop fence s based on the vehicle positionconst auto &vehicle_config =common::VehicleConfigHelper::Instance()->GetConfig();const double ego_front_to_center =vehicle_config.vehicle_param().front_edge_to_center();common::PathPoint stop_pathpoint;// 获取stop pointif (!path_data.GetPathPointWithRefS(*stop_s_on_pathdata,&stop_pathpoint)) {AERROR << "Can't get stop point on path data";return false;}const double ego_theta = stop_pathpoint.theta();Vec2d shift_vec{ego_front_to_center * std::cos(ego_theta),ego_front_to_center * std::sin(ego_theta)};// stop_fence的位置const Vec2d stop_fence_pose =shift_vec + Vec2d(stop_pathpoint.x(), stop_pathpoint.y());double stop_l_on_pathdata = 0.0;const auto &nearby_path = reference_line_info.reference_line().map_path();nearby_path.GetNearestPoint(stop_fence_pose, stop_s_on_pathdata,&stop_l_on_pathdata);return true;}last_path_point_type = std::get<1>(point_guide);}return false;
}

BuildStopDecision

/** @brief: build virtual obstacle of stop wall, and add STOP decision*/
int BuildStopDecision(const std::string& stop_wall_id, const double stop_line_s,const double stop_distance,const StopReasonCode& stop_reason_code,const std::vector<std::string>& wait_for_obstacles,const std::string& decision_tag, Frame* const frame,ReferenceLineInfo* const reference_line_info) {CHECK_NOTNULL(frame);CHECK_NOTNULL(reference_line_info);// 检查停止线是否在参考线上const auto& reference_line = reference_line_info->reference_line();if (!WithinBound(0.0, reference_line.Length(), stop_line_s)) {AERROR << "stop_line_s[" << stop_line_s << "] is not on reference line";return 0;}// create virtual stop wallconst auto* obstacle =frame->CreateStopObstacle(reference_line_info, stop_wall_id, stop_line_s);if (!obstacle) {AERROR << "Failed to create obstacle [" << stop_wall_id << "]";return -1;}const Obstacle* stop_wall = reference_line_info->AddObstacle(obstacle);if (!stop_wall) {AERROR << "Failed to add obstacle[" << stop_wall_id << "]";return -1;}// build stop decisionconst double stop_s = stop_line_s - stop_distance;const auto& stop_point = reference_line.GetReferencePoint(stop_s);const double stop_heading =reference_line.GetReferencePoint(stop_s).heading();ObjectDecisionType stop;auto* stop_decision = stop.mutable_stop();stop_decision->set_reason_code(stop_reason_code);stop_decision->set_distance_s(-stop_distance);stop_decision->set_stop_heading(stop_heading);stop_decision->mutable_stop_point()->set_x(stop_point.x());stop_decision->mutable_stop_point()->set_y(stop_point.y());stop_decision->mutable_stop_point()->set_z(0.0);for (size_t i = 0; i < wait_for_obstacles.size(); ++i) {stop_decision->add_wait_for_obstacle(wait_for_obstacles[i]);}auto* path_decision = reference_line_info->path_decision();path_decision->AddLongitudinalDecision(decision_tag, stop_wall->Id(), stop);return 0;
}

ELSE:涉及到的一些其他函数

NormalizeAngle

NormalizeAngle将给定的角度值规范化到一个特定的范围内(-π到π之间)

double NormalizeAngle(const double angle) {double a = std::fmod(angle + M_PI, 2.0 * M_PI);if (a < 0.0) {a += (2.0 * M_PI);}return a - M_PI;
}

SelfRotate

将向量绕原点旋转 a n g l e angle angle角。

void Vec2d::SelfRotate(const double angle) {double tmp_x = x_;x_ = x_ * cos(angle) - y_ * sin(angle);y_ = tmp_x * sin(angle) + y_ * cos(angle);
}

CheckLaneChangeUrgency

检查紧急换道,当FLAGS_enable_lane_change_urgency_checking为true时,启用函数。
在这里插入图片描述在这里插入图片描述

void RuleBasedStopDecider::CheckLaneChangeUrgency(Frame *const frame) {// 直接进入循环,检查每个reference_line_infofor (auto &reference_line_info : *frame->mutable_reference_line_info()) {// Check if the target lane is blocked or not// 1. 检查目标道路是否阻塞,如果在change lane path上,就跳过if (reference_line_info.IsChangeLanePath()) {is_clear_to_change_lane_ =LaneChangeDecider::IsClearToChangeLane(&reference_line_info);is_change_lane_planning_succeed_ =reference_line_info.Cost() < kStraightForwardLineCost;continue;}// If it's not in lane-change scenario || (target lane is not blocked &&// change lane planning succeed), skip// 2.如果不是换道的场景,或者(目标lane没有阻塞)并且换道规划成功,跳过if (frame->reference_line_info().size() <= 1 ||(is_clear_to_change_lane_ && is_change_lane_planning_succeed_)) {continue;}// When the target lane is blocked in change-lane case, check the urgency// Get the end point of current routingconst auto &route_end_waypoint =reference_line_info.Lanes().RouteEndWaypoint();// If can't get lane from the route's end waypoint, then skip// 3.在route的末端无法获得lane,跳过if (!route_end_waypoint.lane) {continue;}auto point = route_end_waypoint.lane->GetSmoothPoint(route_end_waypoint.s);auto *reference_line = reference_line_info.mutable_reference_line();common::SLPoint sl_point;// Project the end point to sl_point on current reference lane// 将当前参考线的点映射到frenet坐标系下if (reference_line->XYToSL(point, &sl_point) &&reference_line->IsOnLane(sl_point)) {// Check the distance from ADC to the end point of current routingdouble distance_to_passage_end =sl_point.s() - reference_line_info.AdcSlBoundary().end_s();// If ADC is still far from the end of routing, no need to stop, skip// 4. 如果adc距离routing终点较远,不需要停止,跳过if (distance_to_passage_end >rule_based_stop_decider_config_.approach_distance_for_lane_change()) {continue;}// In urgent case, set a temporary stop fence and wait to change lane// TODO(Jiaxuan Xu): replace the stop fence to more intelligent actions// 5.如果遇到紧急情况,设置临时的stop fence,等待换道const std::string stop_wall_id = "lane_change_stop";std::vector<std::string> wait_for_obstacles;util::BuildStopDecision(stop_wall_id, sl_point.s(),rule_based_stop_decider_config_.urgent_distance_for_lane_change(),StopReasonCode::STOP_REASON_LANE_CHANGE_URGENCY, wait_for_obstacles,"RuleBasedStopDecider", frame, &reference_line_info);}}
}

AddPathEndStop

在这里插入图片描述

void RuleBasedStopDecider::AddPathEndStop(Frame *const frame, ReferenceLineInfo *const reference_line_info) {// 路径不为空且起点到终点的距离不小于20mif (!reference_line_info->path_data().path_label().empty() &&reference_line_info->path_data().frenet_frame_path().back().s() -reference_line_info->path_data().frenet_frame_path().front().s() <FLAGS_short_path_length_threshold) { // FLAGS_short_path_length_threshold: Threshold for too short path length(20m)// 创建虚拟墙的IDconst std::string stop_wall_id =PATH_END_VO_ID_PREFIX + reference_line_info->path_data().path_label();std::vector<std::string> wait_for_obstacles;// 创建stop fenceutil::BuildStopDecision(stop_wall_id,reference_line_info->path_data().frenet_frame_path().back().s() - 5.0,0.0, StopReasonCode::STOP_REASON_REFERENCE_END, wait_for_obstacles,"RuleBasedStopDecider", frame, reference_line_info);}
}

参考

[1] 基于规则的停止决策

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/118370.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【包过滤防火墙——firewalld动态防火墙】的简单使用

文章目录 firewald与iptables区别firewalld九个区域firewalld配置方法firewalld参数和命令firewalld两种模式firewalld使用实验 firewalld不要与iptables混用 firewald与iptables区别 iptables 主要是基于接口&#xff0c;来设置规则&#xff0c;从而判断网络的安全性。firewa…

UE4 春节鞭炮

先搞个基类&#xff0c;一个鞭炮的 搞个鞭炮类&#xff0c;存多个鞭炮 在构造函数的位置先生成对应的鞭炮数 将鞭炮绑定到绳子上&#xff0c;随绳子摆动而一起摆动 在基类里面写爆炸事件 最后用Timer去调用

docker-compose 部署 Seata整合nacos,Postgresql 为DB存储

docker-compose 部署 Seata整合nacos,Postgresql 为DB存储 环境 详情环境可参考 https://github.com/alibaba/spring-cloud-alibaba/wiki/%E7%89%88%E6%9C%AC%E8%AF%B4%E6%98%8E 我这里 <spring.cloud.alibaba-version>2021.1</spring.cloud.alibaba-version>所…

linux的make和makefile学习

linux的make和makefile学习 准备工作使用GNU链接库链接到math库编写复利程序 创建自己的库链接到主目录 不同的C标准系统调用write()获取头文件信息功能测试宏 准备工作 安装GCC和Make工具 安装中文输入法 参考&#xff1a;http://t.csdn.cn/eH0Ow sudo apt-get update sudo…

springboot使用logback配置彩色日志

springboot使用logback配置彩色日志 前言一、logback文件二、效果 前言 应该有很多同学发现&#xff0c;使用了logback以后&#xff0c;我们的控制台日志都变成灰色了&#xff0c;网络上搜到的logback配置大多数没有进行配色&#xff0c;所以会把springboot的默认配色方案给覆盖…

【python爬虫】10.指挥浏览器自动工作(selenium)

文章目录 前言selenium是什么怎么用设置浏览器引擎获取数据解析与提取数据自动操作浏览器 实操运用确认目标分析过程代码实现 本关总结 前言 上一关&#xff0c;我们认识了cookies和session。 分别学习了它们的用法&#xff0c;以及区别。 还做了一个项目&#xff1a;带着小…

数据结构 -作用及基本概念

为什么要使用数据结构 学习数据结构是计算机科学和软件工程领域中非常重要的一门课程。以下是学习数据结构的几个重要原因&#xff1a; 组织和管理数据&#xff1a;数据结构提供了一种组织和管理数据的方式。通过学习不同的数据结构&#xff0c;你可以了解如何有效地存储和操作…

Lesson6---案例:人脸案例

学习目标 了解opencv进行人脸检测的流程了解Haar特征分类器的内容 1 基础 我们使用机器学习的方法完成人脸检测&#xff0c;首先需要大量的正样本图像&#xff08;面部图像&#xff09;和负样本图像&#xff08;不含面部的图像&#xff09;来训练分类器。我们需要从其中提取特…

C++学习笔记总结练习:多态与虚函数

1 多态 多态分类 静态多态&#xff0c;是只在编译期间确定的多态。静态多态在编译期间&#xff0c;根据函数参数的个数和类型推断出调用的函数。静态多态有两种实现的方式 重载。&#xff08;函数重载&#xff09;模板。 动态多态&#xff0c;是运行时多态。通过虚函数机制实…

详细介绍如何基于ESP32实现低功耗的电子纸天气显示器--附完整源码

实现界面展示 这是一款天气显示器,由支持 wifi 的 ESP32 微控制器和 7.5 英寸电子纸(又名电子墨水)显示器供电。当前和预测的天气数据是从 OpenWeatherMap API 获取的。传感器为显示屏提供准确的室内温度和湿度。 该项目在睡眠时消耗约 14μA,在约 10 秒的清醒期…

MATLAB制图代码【第二版】

MATLAB制图代码【第二版】 文档描述 Code describtion: This code is version 2 used for processing the data from the simulation and experiment. Time : 2023.9.3 Author: PEZHANG 这是在第一版基础上&#xff0c;迭代出的第二版MATLAB制图代码&#xff0c;第二版的特点是…

不同路径 II【动态规划】

不同路径 II 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish”&#xff09;。 现在考虑网格中有障碍物。那么从左上…

NOR型flash vs NAND型flash

FLASH是一种存储芯片&#xff0c;全名叫Flash EEPROM Memory&#xff0c;通过程序可以修改数据&#xff0c;即平时所说的“闪存”。 闪存可以在软件的控制下写入和擦写数据。其存储空间被分割成相对较大的可擦除单元&#xff0c;成为擦除块&#xff08;erase block&#xff09…

没有使用sniffer dongle在windows抓包蓝牙方法分享

网上很多文章都是介绍买一个sniffer dongle来抓蓝牙数据,嫌麻烦又费钱,目前找到一个好方法,不需要sniffer就可以抓蓝牙数据过程,现分享如下: (1)在我资源附件找到相关安装包或者查看如下链接 https://learn.microsoft.com/zh-cn/windows-hardware/drivers/bluetooth/testing-bt…

Doris架构中包含哪些技术?

Doris主要整合了Google Mesa(数据模型)&#xff0c;Apache Impala(MPP Query Engine)和Apache ORCFile (存储格式&#xff0c;编码和压缩)的技术。 为什么要将这三种技术整合? Mesa可以满足我们许多存储需求的需求&#xff0c;但是Mesa本身不提供SQL查询引擎。 Impala是一个…

Docker技术--Docker中的网络问题

1.docker中的网络通信 如果想要弄清楚docker中的网络通信问题,其实需要弄清楚这几个问题就可以:容器与容器之间的通信、容器与外部网络之间的通信、外部网络与容器之间的通信。 -a:容器与容器之间的通信,如下所示: 在默认情况下,docker使用网桥(Bridge模式)与NAT通信。这…

攻防世界-Caesar

原题 解题思路 没出现什么特殊字符&#xff0c;可能是个移位密码。凯撒密码加密解密。偏移12位就行。

MyBatis-Plus —— 初窥门径

前言 在前面的文章中荔枝梳理了MyBatis及相关的操作&#xff0c;作为MyBatis的增强工具&#xff0c;MyBatis-Plus无需再在xml中写sql语句&#xff0c;在这篇文章中荔枝将梳理MyBatis-Plus的基础知识并基于SpringBoot梳理MyBatis-Plus给出的两个接口&#xff1a;BaseMapper和ISe…

机器学习之 Jupyter Notebook 使用

&#x1f388; 作者&#xff1a;Linux猿 &#x1f388; 简介&#xff1a;CSDN博客专家&#x1f3c6;&#xff0c;华为云享专家&#x1f3c6;&#xff0c;Linux、C/C、云计算、物联网、面试、刷题、算法尽管咨询我&#xff0c;关注我&#xff0c;有问题私聊&#xff01; &…

容器技术Linux Namespaces和Cgroups

对操作系统了解多少&#xff0c;仅仅敲个命令吗 操作系统虚拟化&#xff08;容器技术&#xff09;的发展历程 1979 年&#xff0c;UNIX 的第 7 个版本引入了 Chroot 特性。Chroot 现在被认为是第一个操作系统虚拟化&#xff08;Operating system level virtualization&#x…