2023高教社杯数学建模思路 - 案例:ID3-决策树分类算法

文章目录

  • 0 赛题思路
    • 1 算法介绍
    • 2 FP树表示法
    • 3 构建FP树
    • 4 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

2 FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

3 构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

4 实现代码

def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDatdef createInitSet(dataSet):retDict = {}for trans in dataSet:fset = frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] += 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccurself.nodeLink = Noneself.parent = parentNodeself.children = {}def inc(self, numOccur):self.count += numOccurdef disp(self, ind=1):print('   ' * ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind + 1)def createTree(dataSet, minSup=1):headerTable = {}#此一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]retTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children:  # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count)  # incrament countelse:  # add items[0] to inTree.childreninTree.children[items[0]] = treeNode(items[0], count, inTree)if headerTable[items[0]][1] == None:  # update header tableheaderTable[items[0]][1] = inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) > 1:  # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode):  # this version does not use recursionwhile (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/118764.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉新财经理工 ​​​

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉新财经理工 ​​​

如何高性能、高效率地实现3D Web轻量化?

随着互联网和Web技术的发展&#xff0c;3D Web应用的需求越来越多。然而&#xff0c;复杂的3D模型在Web上展示 和交互通常需要大量的带宽和计算资源。 为了解决这一问题&#xff0c;HOOPS技术作为一套专业的3D图形技术开发工具包&#xff0c;发挥着关键作用。本文 将探讨HOO…

12. 自动化项目实战

目录 1. 登录测试 2. 测试首页的帖子列表数不为0 3. 帖子详情页校验 4. 发布帖子 5. 退出登录 自动化项目实施的基本流程如下图所示&#xff1a; 手工测试用例、自动化测试用例。 1. 登录测试 校验登录后主页显示的用户名称和登录时输入的用户名是否相等。 public class…

java八股文面试[数据库]——慢查询优化

分析慢查询日志 直接分析慢查询日志&#xff0c; mysql使用explain sql语句进行模拟优化器来执行分析。 oracle使用explain plan for sql语句进行模拟优化器来执行分析。 table | type | possible_keys | key |key_len | ref | rows | Extra EXPLAIN列的解释&#xff1a; ta…

Java应用CPU占用过高故障排除

一、背景 最近测试反馈测试环境接口偶现有访问超时&#xff0c;然后APP提示是网络失败&#xff0c;看了一下测试环境的应用完全没啥问题&#xff0c;一直以为是网络问题。 今天测试有反馈了&#xff0c;赶紧看了一下测试服务器&#xff0c;这次终于有症状了&#xff0c;CPU直…

java八股文面试[多线程]——一个线程两次调用start()方法会出现什么情况

典型回答&#xff1a; Java 的线程是不允许启动两次的&#xff0c;第二次调用必然会抛出 IllegalThreadStateException&#xff0c;这是一种运行时异常&#xff0c;多次调用 start 被认为是编程错误。 通过线程的状态图&#xff0c;在第二次调用 start() 方法的时候&#xff…

构建知识库——一文解决跨平台科研文献及笔记同步问题

文章目录 需求及目标现有方案调研文献管理方案云存储方案Markdown编辑器Windows端Ipad端 图床管理方案 最终方案操作流程最后 作为一个十级懒人&#xff0c;要么躺着要么在探寻提效工具的路上。 开始打工生涯之后&#xff0c;除了正常工作时间&#xff0c;总想利用业余时间提升…

恢复已删除的git分支

1.打开对应项目文件夹目录,在目录下执行git命令 2.执行命令 git reflog --dateiso , 找到最后一次commit 的id 3. 执行git checkout -b 新建分支名称 commitId 就会基于commitId这次提交时工作区新建一个分支&#xff0c;就能达到我们找到删除分支的代码效果。 4.直接看ide…

【Locomotor运动模块】瞬移

文章目录 一、原理二、两种类型1、Instant(立刻)2、Dash&#xff08;猛冲&#xff09; 三、瞬移区域、瞬移点1、瞬移区域2、瞬移点 一、原理 抛物线指针选择好目标位置&#xff0c;然后告诉瞬移预设体&#xff1a;你想法把游戏区域弄到目标位置来 解释&#xff1a;抛物线指针选…

设计模式—观察者模式(Observer)

目录 思维导图 一、什么是观察者模式&#xff1f; 二、有什么优点吗&#xff1f; 三、有什么缺点吗&#xff1f; 四、什么时候使用观察者模式&#xff1f; 五、代码展示 ①、双向耦合的代码 ②、解耦实践一 ③、解耦实践二 ④、观察者模式 六、这个模式涉及到了哪些…

在 Python 中构建卷积神经网络; 从 0 到 9 的手绘数字的灰度图像预测数字

一、说明 为了预测从0到9的数字&#xff0c;我选择了一个基于著名的Kaggle的MNIST数据集的数据集。数据集包含从 <0> 到 <9> 的手绘图数字的灰度图像。在本文中&#xff0c;我将根据像素数据&#xff08;即数值数据&#xff09;和卷积神经网络预测数字。 二、 卷积…

智能合约安全分析,针对 ERC777 任意调用合约 Hook 攻击

智能合约安全分析&#xff0c;针对 ERC777 任意调用合约 Hook 攻击 Safful发现了一个有趣的错误&#xff0c;有可能成为一些 DeFi 项目的攻击媒介。这个错误尤其与著名的 ERC777 代币标准有关。此外&#xff0c;它不仅仅是众所周知的黑客中常见的简单的重入问题。 这篇文章对 …

2、Nginx 安装

文章目录 2、Nginx 安装2.1 官网下载2.2 安装 nginx2.2.1 第一步2.2.2 第二步2.2.3 第三步&#xff0c;安装 nginx2.2.4 第四步&#xff0c;修改防火漆规则 【尚硅谷】尚硅谷Nginx教程由浅入深 志不强者智不达&#xff1b;言不信者行不果。 2、Nginx 安装 2.1 官网下载 nginx…

软件测试面试怎样介绍自己的测试项目?会问到什么程度?

想知道面试时该怎样介绍测试项目&#xff1f;会问到什么程度&#xff1f;那就需要换位思考&#xff0c;思考HR在这个环节想知道什么。 HR在该环节普遍想获得的情报主要是下面这2个方面&#xff1a; 1&#xff09;应聘者的具体经验和技术能力&#xff0c; 2&#xff09;应聘者的…

Python实战之数据表提取和下载自动化

在网络爬虫领域&#xff0c;动态渲染类型页面的数据提取和下载自动化是一个常见的挑战。本文将介绍如何利用Pyppeteer库完成这一任务&#xff0c;帮助您轻松地提取动态渲染页面中的数据表并实现下载自动化。 一、环境准备 首先&#xff0c;确保您已经安装了Python环境。接下来…

Android.mk开发模板

今天简单写了一个 Android.mk 的示例模板&#xff0c;供初学者参考。 本模板主要给大家示例 Android NDK 开发中的如下几个问题&#xff1a; 如何自动添加需要编译的源文件列表如何添加第三方静态库、动态库的依赖如何构造一个完整的NDK工程框架 假设我们的项目依赖 libmath.…

【Go 基础篇】Go语言结构体基本使用

在Go语言中&#xff0c;结构体是一种重要的数据类型&#xff0c;用于定义和组织一组不同类型的数据字段。结构体允许开发者创建自定义的复合数据类型&#xff0c;类似于其他编程语言中的类。本文将深入探讨Go语言中结构体的定义、初始化、嵌套、方法以及与其他语言的对比&#…

小赢科技,寻找金融科技核心价

如果说金融是经济的晴雨表&#xff0c;是通过改善供给质量以提高经济质量的切入口&#xff0c;那么金融科技公司&#xff0c;就是这一切行动的推手。上半年&#xff0c;社会经济活跃程度提高背后&#xff0c;金融科技公司既是奉献者&#xff0c;也是受益者。 8月29日&#xff0…

postgresql并行查询(高级特性)

######################## 并行查询 postgresql和Oracle一样支持并行查询的,比如select、update、delete大事无开启并行功能后,能够利用多核cpu,从而充分发挥硬件性能,提升大事物的处理效率。 pg在9.6的版本之前是不支持的并行查询的,从9.6开始支持并行查询,但是功能非常…

go学习part21(3)redis连接池

连接池 1.介绍 每次使用数据就就建立链接再关闭可以&#xff0c;但是如果有大量客户端频繁请求连接&#xff0c;大量创建连接和关闭会非常耗费资源。 所以就建立一个连接池&#xff0c;里面存放几个不关闭的连接&#xff0c;谁要用就分配给谁。 说明:通过Golang 对 Redis操…