Paddle训练COCO-stuff数据集学习记录

COCO-stuff数据集

COCO-Stuff数据集对COCO数据集中全部164K图片做了像素级的标注。

80 thing classes, 91 stuff classes and 1 class ‘unlabeled’

在这里插入图片描述

数据集下载
wget --directory-prefix=downloads http://images.cocodataset.org/zips/train2017.zip
wget --directory-prefix=downloads http://images.cocodataset.org/zips/val2017.zip
wget --directory-prefix=downloads http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip解压数据集
mkdir -p dataset/images
mkdir -p dataset/annotations
unzip downloads/train2017.zip -d dataset/images/
unzip downloads/val2017.zip -d dataset/images/
unzip downloads/stuffthingmaps_trainval2017.zip -d dataset/annotations/

下载完成数据集后需要生成数据集的读取文件,即train.txtval.txt,根据先前cityspaces数据集的文件格式,博主发现COCO-stuff数据集的结构更为简单,因此便自己写了数据集目标生成代码,代码如下:

import os
import random
filePath1 = '/data/datasets/cocostuff/dataset/images/train2017/'     
filePath2 = '/data/datasets/cocostuff/dataset/annotations/train2017/'    
list_data1=os.listdir(filePath1) 
list_data2=os.listdir(filePath2)  
file = open("/data/datasets/cocostuff/dataset/train.txt", 'w+')
for i,j in zip(list_data1,list_data2):file.write('/data/datasets/cocostuff/dataset/images/train2017/'+i+' ')file.write('/data/datasets/cocostuff/dataset/annotations/train2017/'+j+'\n')
file.close()

生成的目录文件如下:其中第一组数据是数据集图片地址,第二组数据是标注文件地址

在这里插入图片描述

然而,却报错了,提升pre与lable不一致,即图片维度不一致,此时才发现,先前写的目录生成文件没有将图片与标注正确对应,重新改写:

import os
import random
path="train2017/"
filePath1 = '/data/datasets/cocostuff/dataset/images/'+path      
list_data1=os.listdir(filePath1)  
file = open("/data/datasets/cocostuff/dataset/train.txt", 'w+')
for i in list_data1:i=os.path.splitext(i)[0]file.write('/data/datasets/cocostuff/dataset/images/'+path+i+'.jpg ')file.write('/data/datasets/cocostuff/dataset/annotations/'+path+i+'.png'+'\n')
file.close()

生成数据集目录地址后,即可编辑数据集配置文件。

修改数据集配置文件,新建cfg文件,即在configs文件夹的rtformer中新建rtformer_cocostuff_512x512_120k.yml,具体内容如下:

_base_: '../_base_/coco_stuff.yml'batch_size: 3 # total batch size:  4 * 3
iters: 190000train_dataset:transforms:- type: ResizeStepScalingmin_scale_factor: 0.5max_scale_factor: 2.0scale_step_size: 0.25- type: RandomPaddingCropcrop_size: [520, 520]- type: RandomHorizontalFlip- type: RandomDistortbrightness_range: 0.4contrast_range: 0.4saturation_range: 0.4- type: Normalizemean: [0.485, 0.456, 0.406]std: [0.229, 0.224, 0.225]val_dataset:transforms:- type: Resizetarget_size: [2048, 1024]keep_ratio: True- type: Normalizemean: [0.485, 0.456, 0.406]std: [0.229, 0.224, 0.225]export:transforms:- type: Resizetarget_size: [2048, 512]keep_ratio: True- type: Normalizemean: [0.485, 0.456, 0.406]std: [0.229, 0.224, 0.225]optimizer:_inherited_: Falsetype: AdamWbeta1: 0.9beta2: 0.999weight_decay: 0.0125lr_scheduler:_inherited_: Falsetype: PolynomialDecaylearning_rate: 4.0e-4power: 1.end_lr: 1.0e-6warmup_iters: 1500warmup_start_lr: 1.0e-6loss:types:- type: CrossEntropyLosscoef: [1, 0.4]model:type: RTFormerbase_channels: 64head_channels: 128use_injection: [True, False]pretrained: https://paddleseg.bj.bcebos.com/dygraph/backbone/rtformer_base_backbone_imagenet_pretrained.zip

新建coco-stuff.yaml文件,配置数据集:

batch_size: 2
iters: 80000
train_dataset:type: Datasetdataset_root: /train_path: /data/datasets/cocostuff/dataset/train.txtnum_classes: 182transforms:- type: ResizeStepScalingmin_scale_factor: 0.5max_scale_factor: 2.0scale_step_size: 0.25- type: RandomPaddingCropcrop_size: [520, 520]- type: RandomHorizontalFlip- type: RandomDistortbrightness_range: 0.4contrast_range: 0.4saturation_range: 0.4- type: Normalizemode: train
val_dataset:type: Datasetdataset_root: /val_path: /data/datasets/cocostuff/dataset/val.txtnum_classes: 182transforms: - type: Normalizemode: val
optimizer:type: sgdmomentum: 0.9weight_decay: 4.0e-5
lr_scheduler:type: PolynomialDecaylearning_rate: 0.01end_lr: 0power: 0.9
loss:types:- type: CrossEntropyLosscoef: [1]

随后便可以运行了

报错问题

报错1:这个问题令我感到困惑,因为先前已经用该环境训练过cityspces数据集,但还是重新又部署了一下环境,但依旧出错,最后发现是由于博主的数据集类别设置错误导致的,这实在是令人匪夷所思。

OSError: (External) CUDNN error(8), CUDNN_STATUS_EXECUTION_FAILED.   [Hint: Please search for the error code(8) on website (https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnStatus_t) to get Nvidia's official solution and advice about CUDNN Error.] (at /paddle/paddle/phi/kernels/gpudnn/conv_grad_kernel.cu:502)

为以防万一,还是给出环境配置:

在这里插入图片描述

在这里插入图片描述

最终运行train.py文件即可

在这里插入图片描述

报错2

 The axis is expected to be in range of [0, 0), but got 0[Hint: Expected axis >= -rank && axis < rank == true, but received axis >= -rank && axis < rank:0 != true:1.] (at ../paddle/phi/infermeta/multiary.cc:961)

这个似乎是版本问题导致的,将paddle调整到2.4.0后该问题就解决了。

报错3

ValueError: (InvalidArgument) The shape of input[0] and input[1] is expected to be equal.But received input[0]'s shape = [1], input[1]'s shape = [1, 1].[Hint: Expected inputs_dims[i].size() == out_dims.size(), but received inputs_dims[i].size():2 != out_dims.size():1.] (at /paddle/paddle/phi/kernels/funcs/concat_funcs.h:55)

似乎是之前博主修改了metrics.py文件导致的,但好像并不是,保持metrics.py文件原样即可,修改下数据集目录即可。

警告

Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In order to avoid this problem, 0D Tensor will be changed to 1D numpy currently, but it's not correct and will be removed in release 2.6. For Tensor contain only one element, Please modify  'Tensor.numpy()[0]' to 'float(Tensor)' as soon as possible, otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.

警告提醒,据说是该设计在paddle2.6已经被弃用了,但该警告其实并不影响实验进程,只是看着不舒服而已,那就不看好了。但作为一个完美主义者,怎么能容忍这种情况呢,而且这样输出警告会给日志文件造成很大负担,因此果断降低版本。2.4.0的是可以的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/119322.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

“媒体+”时代正当时,ATEN以前瞻解决方案助推媒体融合纵深发展

自媒体融合概念提出以来,传统媒体与新媒体融合速度加快,两者的相互结合与优势互补为广电行业发展提供了新的契机,更加多元化、个性化、强互动的“媒体”传播格局已逐渐形成。 “媒体”理念的创建,对于广电行业而言无疑是一种积极的改革创新之举,然而“媒体”的发展也呈现出泛媒…

Python实现自动关键词提取

随着互联网的发展&#xff0c;越来越多的人喜欢在网络上阅读小说。本文将通过详细示例&#xff0c;向您介绍如何使用Python编写爬虫程序来获取网络小说&#xff0c;并利用自然语言处理技术实现自动文摘和关键词提取功能。 1. 网络小说数据抓取 首先&#xff0c;请确保已安装必…

Show that f(z)=1/z is analytic or not

See https://brainly.in/question/21838444

PaddleNLP使用Vicuna

LLaMA 模型 LLaMa 是一个大型语言模型&#xff0c;由 Meta 开源。它的全称是 Large Language Model Meta AI&#xff0c;参数量从 70 亿到 650 亿不等。例如&#xff0c;130 亿参数的 LLaMA 模型在大多数基准上可以胜过参数量达 1750 亿的 GPT-3&#xff0c;而且可以在单块 V1…

HTTP协议初识·中篇

加上目录&#xff0c;会出现导向不正确的情况&#xff0c;可能是bug&#xff0c;目录一长就容易出错&#xff1f; 本篇主要讲解了&#xff1a; 网页分离(网页代码和.c文件分离) html链接跳转 网页添加图片 确认并返回资源类型 填写正文长度属性 添加表单 临时重定向 补充知识&a…

Jdk8 动态编译 Java 源码为 Class 文件(三)

Jdk8 动态编译 Java 源码为 Class 文件 一.JDK版本二.工程介绍1.依赖2.启动类3.配置类&#xff08;用于测试依赖注入&#xff09;4.工具类1.Java 源码文件读取类2.SpringBoot 容器实例管理类 5.测试类1.抽象类2.接口类3.默认抽象实现4.默认接口实现 6.接口类1.测试接口2.类重载…

SpringWeb(SpringMVC)

目录 SpringWeb介绍 搭建 SpringWeb SpringWeb介绍 Spring Web是一个基于 Servlet API 构建的原始 web 框架&#xff0c;用于构建基于MVC模式的Web应用程序。在 web 层框架历经 Strust1&#xff0c;WebWork&#xff0c;Strust2 等诸多产品的历代更选 之后&#xff0c;目前业界普…

QT DAY4

一、使用鼠标时间完成组件的移动 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QDebug> #include<QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widg…

LLMs:OpenAI官方重磅更新——新增GPT-3.5Turbo调和API更新功能

LLMs&#xff1a;OpenAI官方重磅更新——新增GPT-3.5Turbo调和API更新功能 导读&#xff1a;2023年8月22日&#xff0c;OpenAI官方发布&#xff0c;开发者现在可以使用自己的数据来定制适用于其用例的GPT-3.5 Turbo模型。GPT-3.5 Turbo的微调现在已经可用&#xff0c;GPT-4的微…

【算法与数据结构】106、LeetCode从中序与后序遍历序列构造二叉树

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;首先我们要知道后序遍历数组的最后一个元素必然是根节点&#xff0c;然后根据根节点在中序遍历数组中的…

【LeetCode-中等题】994. 腐烂的橘子

文章目录 题目方法一&#xff1a;bfs层序遍历 题目 该题值推荐用bfs&#xff0c;因为是一层一层的感染&#xff0c;而不是一条线走到底的那种&#xff0c;所以深度优先搜索不适合 方法一&#xff1a;bfs层序遍历 广度优先搜索&#xff0c;就是从起点出发&#xff0c;每次都尝…

Android GB28181客户端开发(1):GB28181协议简介

Android GB28181客户端开发(1):GB28181协议简介 公共安全视频监控联网系统信息传输、交换、控制技术要求(2016版) 源码请翻到文章结尾 介绍GB28181协议 GB28181协议是一种基于IP网络的远程视频监控系统,它定义了设备之间的通信协议和数据格式。GB28181协议的主要特点是支…

【Rust】001-基础语法:变量声明及数据类型

【Rust】001-基础语法&#xff1a;变量声明及数据类型 文章目录 【Rust】001-基础语法&#xff1a;变量声明及数据类型一、概述1、学习起源2、依托课程 二、入门程序1、Hello World2、交互程序代码演示执行结果 3、继续上难度&#xff1a;访问链接并打印响应依赖代码执行命令 三…

Collections和CollectionUtils集合操作

0.引入依赖 <dependency><groupId>org.apache.commons</groupId><artifactId>commons-collections4</artifactId><version>4.4</version> </dependency> 一.Collections用法&#xff1a; 01、排序操作 reverse(List list)…

【摆烂之小左】Maven配置IDEA教程

Maven是什么 Maven项目对象模型(POM)&#xff0c;可以通过一小段描述信息来管理项目的构建&#xff0c;报告和文档的项目管理工具软件。 Maven 除了以程序构建能力为特色之外&#xff0c;还提供高级项目管理工具。由于 Maven 的缺省构建规则有较高的可重用性&#xff0c;所以常…

数学建模:模糊综合评价分析

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 数学建模&#xff1a;模糊综合评价分析 文章目录 数学建模&#xff1a;模糊综合评价分析综合评价分析常用评价方法一级模糊综合评价综合代码 多级模糊综合评价总结 综合评价分析 构成综合评价类问题的五个…

go语言基础操作--二

a : 10str : "mike"//匿名函数&#xff0c;没有函数名字 形成一个闭包,函数定义&#xff0c;还没有调用f1 : func() { //:自动推到类型fmt.Println("a ", a)fmt.Println("str ", str)}f1()//给一个函数类型起别名 这个写法不推荐type FuncType …

Flutter状态管理 — 探索Flutter中的状态

前言 随着响应式编程的理念&Flutter被大众所了解以来&#xff0c;状态管理一直是一个引人深思的话题。如果想要学习好Flutter这样的响应式的编程框架就一定是离不开状态管理的。我遇到过很多没有了解过响应式编程框架的&#xff0c;或者从事后端开发&#xff0c;自己想用F…

docker笔记4:高级复杂安装-mysql主从复制

1.主从搭建步骤 1.1新建主服务器容器实例3307 docker run -p 3307:3306 --name mysql-master \ -v /mydata/mysql-master/log:/var/log/mysql \ -v /mydata/mysql-master/data:/var/lib/mysql \ -v /mydata/mysql-master/conf:/etc/mysql \ -e MYSQL_ROOT_PASSWORDroot \ -d…

Linux的目录结构特点

Linux的目录结构特点 1、使用树形目录结构来组织和管理文件。 2、整个系统只有一个根目录&#xff08;树根&#xff09;&#xff0c;Linux的根目录用“/”表示。 3、其他所有分区以及外部设备&#xff08;如硬盘&#xff0c;光驱等&#xff09;都是以根目录为起点&#xff0…