【机器学习】人工智能概述(文末送书)

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


目录

1.人工智能概述

1.1 机器学习、人工智能与深度学习

1.2 机器学习、深度学习能做些什么

2.什么是机器学习

2.1 定义

2.2 解释

2.3 数据集构成 

3.机器学习算法分类

4.机器学习开发流程 

5.学习框架

6.文末福利


1.人工智能概述

1.1 机器学习、人工智能与深度学习

机器学习和人工智能,深度学习的关系

  1. 人工智能(AI):人工智能是一门研究如何使计算机能够模拟、理解和执行人类智能任务的学科。它的目标是让计算机具备类似于人类的智能水平,可以进行推理、学习、感知和决策。

  2. 机器学习:机器学习是人工智能的一个重要分支,它是让计算机通过从数据中学习和提取模式,自动改进执行特定任务的能力。在传统编程中,程序员需要明确指定计算机应该如何执行任务,而在机器学习中,计算机通过学习数据的规律和特征自主地进行任务执行,这种方式使得计算机在面对新的情况时也能做出合理的决策。

  3. 深度学习:深度学习是机器学习的一种方法,它是通过构建和训练深层神经网络来实现学习和特征提取的过程。这些深层神经网络由多个神经元层组成,允许计算机通过层次化的方式提取和学习数据中的复杂特征。深度学习在图像识别、自然语言处理、语音识别等领域取得了显著的成就,并且在人工智能的快速发展中起到了重要的推动作用。

  • 机器学习是人工智能的一个实现途径

  • 深度学习是机器学习的一个方法发展而来

  • 深度学习是机器学习的一种技术手段,而机器学习是人工智能的一个重要组成部分。在实际应用中,深度学习带来了许多强大的AI模型和系统,使得计算机能够在复杂和大规模的数据中进行高效的学习和推理,从而实现了许多前所未有的人工智能应用。

达特茅斯会议-人工智能的起点

        1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,约翰·麦卡锡(John McCarthy),马文·闵斯基(Marvin Minsky,人工智能与认知学专家),克劳德·香农(Claude Shannon,信息论的创始人),艾伦·纽厄尔(Allen Newell,计算机科学家),赫伯特·西蒙(Herbert Simon,诺贝尔经济学奖得主)等科学家正聚在一起,讨论着一个完全不食人间烟火的主题:用机器来模仿人类学习以及其他方面的智能。会议足足开了两个月的时间,虽然大家没有达成普遍的共识,但是却为会议讨论的内容起了一个名字:人工智能。因此,1956年也就成为了人工智能元年。

1.2 机器学习、深度学习能做些什么

        机器学习的应用场景非常多,可以说渗透到了各个行业领域当中。医疗、航空、教育、物流、电商等等领域的各种场景。

  • 用在挖掘、预测领域:

    • 应用场景:店铺销量预测、量化投资、广告推荐、企业客户分类、SQL语句安全检测分类…

  • 用在图像领域:

    • 应用场景:街道交通标志检测、人脸识别等等

  • 用在自然语言处理领域:
    • 应用场景:文本分类、情感分析、自动聊天、文本检测等等

2.什么是机器学习

2.1 定义

        机器学习(Machine Learning)是一种人工智能(AI)的分支,它是通过计算机系统从数据中学习和改进执行特定任务的能力,而无需明确编程指令。换句话说,机器学习使得计算机可以通过数据的模式和规律,自动提取特征和知识,并在未来面对新的数据时做出合理的决策。

        传统的程序设计中,程序员需要编写明确的规则和算法,以指导计算机完成特定任务。但在机器学习中,我们提供给计算机的是一组训练数据,包含输入和对应的输出结果。计算机通过对这些数据进行学习,找到数据中的模式和规律,从而能够在未来的数据中进行预测或分类。

机器学习任务可以分为以下几类:

  1. 监督学习(Supervised Learning):在监督学习中,我们向计算机提供带有标签的训练数据,也就是输入数据和对应的正确输出。计算机通过学习这些数据来建立输入和输出之间的映射关系,从而能够预测未标记数据的输出。

  2. 无监督学习(Unsupervised Learning):在无监督学习中,我们向计算机提供没有标签的训练数据,计算机需要自主地发现数据中的结构和模式。无监督学习常用于聚类、降维和异常检测等任务。

  3. 强化学习(Reinforcement Learning):强化学习是一种通过尝试和错误来学习最佳决策策略的学习方法。在强化学习中,计算机代理根据环境的反馈(奖励或惩罚)不断调整策略,以最大化累积的奖励。

2.2 解释

  • 我们人从大量的日常经验中归纳规律,当面临新的问题的时候,就可以利用以往总结的规律去分析现实状况,采取最佳策略。
  • 从数据(大量的猫和狗的图片)中自动分析获得模型(辨别猫和狗的规律),从而使机器拥有识别猫和狗的能力。基于tensorflow深度学习的猫狗分类识别
  • 从数据(房屋的各种信息)中自动分析获得模型(判断房屋价格的规律),从而使机器拥有预测房屋价格的能力。基于随机森林模型对北京房价进行预测

从历史数据当中获得规律?这些历史数据是怎么的格式? 

2.3 数据集构成 

  • 结构:特征值+目标值

注:

  • 对于每一行数据我们可以称之为样本
  • 有些数据集可以没有目标值:

3.机器学习算法分类

  • 特征值:猫/狗的图片;目标值:猫/狗-类别
    • 分类问题
  • 特征值:房屋的各个属性信息;目标值:房屋价格-连续型数据
    • 回归问题
  • 特征值:人物的各个属性信息;目标值:无
    • 无监督学习

  • 监督学习(supervised learning)(预测)
    • 定义:输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。
    • 分类 k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
    • 回归 线性回归、岭回归
  • 无监督学习(unsupervised learning)
    • 定义:输入数据是由输入特征值所组成。
    • 聚类 k-means

4.机器学习开发流程 

流程图:

5.学习框架

需明确几点问题:

(1)算法是核心,数据计算是基础

(2)找准定位

大部分复杂模型的算法设计都是算法工程师在做,而我们

  • 分析很多的数据
  • 分析具体的业务
  • 应用常见的算法
  • 特征工程、调参数、优化
  • 我们应该怎么做?

  • 学会分析问题,使用机器学习算法的目的,想要算法完成何种任务

  • 掌握算法基本思想,学会对问题用相应的算法解决
  • 学会利用库或者框架解决问题

当前重要的是掌握一些机器学习算法等技巧,从某个业务领域切入解决问题。

机器学习库与框架:

6.文末福利

《PySpark机器学习、自然语言处理与推荐系统》免费包邮送出3本!

内容简介:

       使用PySpark构建机器学习模型、自然语言处理应用程序以及推荐系统,从而应对各种业务挑战。该书首先介绍Spark的基础知识及其演进,然后讲解使用PySpark构建传统机器学习算法以及自然语言处理和推荐系统的全部知识点。
  《PySpark机器学习、自然语言处理与推荐系统》阐释如何构建有监督机器学习模型,比如线性回归、逻辑回归、决策树和随机森林,还介绍了无监督机器学习模型,比如K均值和层次聚类。该书重点介绍特征工程,以便使用PySpark创建有用的特征,从而训练机器学习模型。自然语言处理的相关章节将介绍文本处理、文本挖掘以及用于分类的嵌入。
  在阅读完该书后,读者将了解如何使用PySpark的机器学习库构建和训练各种机器学习模型。此外,还将熟练掌握相关的PySpark组件,比如数据获取、数据处理和数据分析,通过使用它们开发数据驱动的智能应用。

编辑推荐:

适读人群 :数据科学家、机器学习工程师

        使用PySpark构建机器学习模型、自然语言处理应用程序以及推荐系统,从而应对各种业务挑战。本书首先介绍Spark的基础知识,然后讲解使用PySpark构建传统机器学习算法以及自然语言处理和推荐系统的全部知识点。

        本书阐释了如何构建有监督机器学习模型,比如线性回归、逻辑回归、决策树和随机森林,还介绍了无监督机器学习模型,比如K均值和层次聚类。本书重点介绍特征工程,以便使用PySpark创建有用的特征,从而训练机器学习模型。自然语言处理的相关章节将介绍文本处理、文本挖掘以及用于分类的嵌入。

        在阅读完本书之后,读者将了解如何使用PySpark的机器学习库构建和训练各种机器学习模型。此外,还将熟练掌握相关的PySpark组件,从而进行数据获取、数据处理和数据分析,开发数据驱动的智能应用。

  • 抽奖方式:评论区随机抽取3位小伙伴免费送出!
  • 参与方式:关注博主、点赞、收藏、评论区评论“人生苦短,拒绝内卷!”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!
  • 活动截止时间:2023-09-08 20:00:00
  • 购买链接:https://item.jd.com/12611069.html

 名单公布时间:2023-09-08 21:00:00   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/119686.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法笔记】二维的哈希与迭代转换;Runtime Error 的解决思路

https://vjudge.net/problem/UVA-11019 如何对一个二维数组进行哈希 对于一个一维数组A(1*M),哈希的方式是: s e e d M − 1 ∗ A [ 0 ] s e e d M − 2 ∗ A [ 1 ] s e e d M − 3 ∗ A [ 2 ] . . . s e e d 0 ∗ A [ M − 1 ] seed^{M-1}*A[0] …

Python安装与Pycharm配置

Python与Pycharm安装 用了一年的Python最近被一个问题难倒了,pip安装一直不能用,报错说被另一个程序使用。被逼到只能重新安装python了,正好记录一下这个过程,写这篇笔记。(突然想到可能是配Arcgis的python接口&#…

微信小程序修改vant组件样式

1 背景 在使用vant组件开发微信小程序的时候,想更改vant组件内部样式,达到自己想要的目的(van-grid组件改成宫格背景色为透明,默认为白色),官网没有示例,通过以下几步修改成功。 2 步骤 2.1 …

【USRP】调制解调系列7:GMSK、MSK、基于labview的实现

MSK 在数字调制中,最小频移键控(Minimum-Shift Keying,缩写:MSK)是一种连续相位的频移键控方式,在1950年代末和1960年代产生。与偏移四相相移键控(OQPSK)类似,MSK同样将…

记录一下自己对linux分区挂载的理解

一直狠模糊,分两个区,一个挂载/, 一个挂载/home 两者是什么关系 实测 先看挂载的内容 然后umount /home后创建一个新文件 再挂载回去 发现旧分区又回来了,说明路径只是个抽象的概念,分区挂载,互相之间数据是不影响…

基于 Zookeeper 实现服务注册和服务发现

文章目录 前言声明前置知识服务注册和发现Zookeeper 工作原理实现过程注册中心服务注册服务发现 总结 前言 无论是采用SOA还是微服务架构,都需要使用服务注册和服务发现组件。我刚开始接触 Dubbo 时一直对服务注册/发现以及 Zookeeper 的作用感到困惑,现…

【Elsevier旗下】中科院1区TOP,影响因子9分+,23天录用!极速见刊!

极速见刊推荐 中科院 1区(TOP) 出版社:Elsevier 影响因子:IF(2022)9.0-10.0 期刊分区:JCR1区,中科院1区(TOP) 检索情况:SCIE 在检&#xff…

微服务之架构演变

随着互联网的发展,网站应用规模不断扩大,网站架构随之不断演变,演变历史大致分为单体应用架构-垂直应用架构-分布式架构-SOA架构-微服务架构-云原生架构 架构演变 单体应用架构 以前网站流量小,只需要一个应用就可以把所有功能…

模拟实现list

目录 list的实现结构节点的实现迭代器的实现第一个模板参数T第二个模板参数Ref第三个模板参数Ptr 实现list中的接口函数插入和删除赋值重载和拷贝构造析构函数 总结 list的实现结构 STL库中的list的结构是双向循环链表,所以我们这里也实现一个双向循环链表 我们这…

中介者模式

1、场景 假如没有总经理。下面三个部门:财务部、市场部、研发部。财务部要发工资,让大家核对公司需要跟市场部和研发部都通气;市场部要接个新项目,需要研发部处理技术、需要财务部出资金。市场部跟各个部门打交道。 虽然只有三个…

无涯教程-JavaScript - DVAR函数

描述 DVAR函数使用与指定条件相匹配的列表或数据库的列中的数字,根据样本估算总体的方差。 语法 DVAR (database, field, criteria)争论 Argument描述Required/Optionaldatabase 组成列表或数据库的单元格范围。 数据库是相关数据的列表,其中相关信息的行是记录,数据的列是…

大数据课程K17——Spark的协同过滤法

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解Spark的协同过滤概念; 一、协同过滤概念 1. 概念 协同过滤是一种借助众包智慧的途径。它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度。其内在思想是相似度的定义…

服务器放在香港好用吗?

​  相较于国内服务器,将网站托管在香港服务器上最直观的好处是备案层面上的。香港服务器上的网站无需备案,因此更无备案时限,购买之后即可使用。 带宽优势 香港服务器的带宽一般分为香港本地带宽和国际带宽、直连中国骨干网 CN2三种。香港…

【python】—— 函数详解

前言: 本期,我们将要讲解的是有关python中函数的相关知识!!! 目录 (一)函数是什么 (二)语法格式 (三)函数参数 (四)函…

轻量、便捷、高效—经纬恒润AETP助力车载以太网测试

随着自动驾驶技术和智能座舱的不断发展,高宽带、高速率的数据通信对主干网提出了稳定、高效的传输要求,CAN(FD)、LIN已无法充分满足汽车的通信需求。车载以太网作为一种快速且扩展性好的网络技术,已经逐步成为了汽车主干网的首选。 此外&…

面试题汇总

文章目录 一. 腾讯二. 华为三. 快手1. Long 的长度和范围,为什么要减 1 (Java基础)2. 线程池配置无界队列了之后,拒绝策略怎么搞,什么时候用到无界队列 (JUC并发) 四. 美团五. 阿里六. 百度七. 字节八. 大疆1. 为什么创建进程开销比线程大? …

Python之作业(一)

Python之作业(一) 作业 打印九九乘法表 用户登录验证 用户依次输入用户名和密码,然后提交验证用户不存在、密码错误,都显示用户名或密码错误提示错误3次,则退出程序验证成功则显示登录信息 九九乘法表 代码分析 先…

win | wireshark | 在win上跑lua脚本 解析数据包

前提说明:之前是在linux 系统上配置的,然后现在 在配置lua 脚本 ,然后 分析指定协议 的 数据包 其实流程也比较简单,但 逻辑需要缕清来 首先要把你 预先准备的 xxx.lua 文件放到wireshark 的安装文件中,(我…

linux深入理解多进程间通信

1.进程间通信 1.1 进程间通信目的 数据传输:一个进程需要将它的数据发送给另一个进程资源共享:多个进程之间共享同样的资源。通知事件:一个进程需要向另一个或一组进程发送消息,通知它(它们)发生了某种事件…

《Linux从练气到飞升》No.20 Linux进程替换

🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的…