13.108.Spark 优化、Spark优化与hive的区别、SparkSQL启动参数调优、四川任务优化实践:执行效率提升50%以上

13.108.Spark 优化
1.1.25.Spark优化与hive的区别
1.1.26.SparkSQL启动参数调优
1.1.27.四川任务优化实践:执行效率提升50%以上

13.108.Spark 优化:

1.1.25.Spark优化与hive的区别

先理解spark与mapreduce的本质区别,算子之间(map和reduce之间多了依赖关系判断,即宽依赖和窄依赖。)
优化的思路和hive基本一致,比较大的区别就是mapreduce算子之间都需要落磁盘,而spark只有宽依赖才需要落磁盘,窄依赖不落磁盘。
在这里插入图片描述
在这里插入图片描述

1.1.26.SparkSQL启动参数调优

在这里插入图片描述

1)先对比结果:executors优化
Hive执行了30分钟(1800秒)的sql,没有优化过的SparkSQL执行需要,
最少化的Executor执行需要640秒(提高了Executor的并行度,牺牲了HDFS的吞吐量:5个core最合适),
最大化的Executor 281.634秒(最大限度的利用HDFS的吞吐量,牺牲Executor的并行度),
优化取中间值,253.189秒。

方案1:最少化 Fat executors

---------------------------------	Fat executors	--------------------------------------------------------------------------------
./spark-sql --master yarn \	# Fat executors (每个节点一个Executor)【优势:最佳吞吐量】
--num-executors 3 \			# 集群中的节点的数目 = 3
--executor-memory 30G \	# 每个节点的内存/每个节点的executor数目 = 30GB/1 = 30GB
--executor-cores 16 \		# 每个executor独占节点中所有的cores = 节点中的core的数目 = 16
--driver-memory 1G			# AM大约需要1024MB的内存和一个Executor
耗时:Time taken: 640 seconds

方案2:最大化Tiny executors

---------------------------------	Tiny executors	--------------------------------------------------------------------------------
./spark-sql --master yarn \	# Tiny executors [每个Executor一个Core]【优势:并行性】
--num-executors 48 \		# 集群中的core的总数 = 每个节点的core数目 * 集群中的节点数 = 16*3
--executor-memory 1.6G \	# 每个节点的内存/每个节点的executor数目 = 30GB/16 = 1.875GB
--executor-cores 1 \			# 每个executor一个core
--driver-memory 1G			# AM大约需要1024MB的内存和一个Executor
耗时:Time taken: 281.634 seconds
executor并发度只有45,task的并发度,1个executor 50左右,总数 18382

方案3:折中方案

---------------------------------	Balance between Fat (vs) Tiny	--------------------------------------------------------------------------------
./spark-sql --master yarn \	# Balance between Fat (vs) Tiny
--num-executors 8 \			# (16-1)*3/5 = 9 留一个executor给ApplicationManager => --num-executors = 9-1 = 8# 每个节点的executor的数目 = 9 / 3 = 3
--executor-memory 10G \	# 每个executor的内存 = 30GB / 3 = 10GB【默认分配的是8G,需要修改配置文件支持到10G。】# 计算堆开销 = 7% * 10GB = 0.7GB。因此,实际的 --executor-memory = 10 - 0.7 = 9.3GB
--executor-cores 5 \			# 给每个executor分配5个core,保证良好的HDFS吞吐。# 每个节点留一个core给Hadoop/Yarn守护进程 => 每个节点可用的core的数目= 16 - 1
--driver-memory 1G			
耗时:Time taken: 253 seconds

Task并行度优化
1.调整 Executors 下 每个stage的默认task数量,即设置Task 的并发度:

【当集群数量比较大时】
很多人常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,
!【默认是一个HDFS block对应一个task(如果不设置那么可以通过第三种方案来优化!)】。
通常来说,Spark默认设置的数量是偏少的(比如就几十个task),
如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。
试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,
那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!
因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,
比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。

30 G 16 core

/home/admin/bigdata/spark-2.2.0-bin-hadoop2.6/bin/spark-sql \
--master yarn \
--num-executors 16 \
--executor-memory 1G \
--executor-cores 10 \
--driver-memory 1G \
--conf spark.default.parallelism=450 \
--conf spark.storage.memoryFraction=0.5 \
--conf spark.shuffle.memoryFraction=0.3	

1.1.27.四川任务优化实践:执行效率提升50%以上

一、四川的信息
账号:xxxxxx 密码: xxxxxxxx

一、事实表优化
1、**优化结果: 20 分钟左右,优化完成后 5 分钟左右。**数据量:5.8亿

2、原SQL:(spark不一定快)

drop table if exists dc_f_organization;
create table if not exists dc_f_organization (orgid int,orgcode string,yearmonth string ,zzdate string,orgname string,orglevel int,id int,orgtagging int, createdate timestamp
);insert into dc_f_organization
select a.orgid, .orgcode, a.yearmonth, a.zzdate, n.orgname, n.orglevel, n.id, n.orgtagging, n.createdate
from ( select o.id orgid, o.orgcode, d.yearmonth, d.zzdate from dc_d_organization o, dc_d_wddate ) aleft join dc_d_organization n on to_date(n.createdate)=a.zzdate and n.orgcode = a.orgcode;

3、优化方案:
– ############################## HIVE 执行:增加 block 的数量,提高Spark的并发度(当前任务文件比较小,设置了26;一般参考数量:300左右;) #################################
– (1) 单独执行笛卡尔积,
– 先拆分文件:(改用hive,拆分文件,增加并行度)
– 【耗时:101.586 seconds;结果文件数量 26】
– 检查文件块数量:hadoop fs -ls /user/hive/warehouse/test.db/dc_d_org_date 26 个block

set mapreduce.map.memory.mb=1024;
set mapred.max.split.size=524288;
set mapred.min.split.size.per.node=524288;
set mapred.min.split.size.per.rack=524288;
drop table if exists dc_d_org_date;
create table dc_d_org_date as select o.id orgid,o.orgcode,d.yearmonth,d.zzdate from dc_d_organization o CROSS JOIN dc_d_wddate d;
-- ##############################	SPARK 执行;参数:spark-sql --master yarn --num-executors 100 --executor-memory 5G --executor-cores 3 --driver-memory 3G	#################################
-- (2)【Spark:Time taken: 115.78 seconds;】
set spark.shuffle.consolidateFiles=true;
drop table if exists dc_f_organization;
create table if not exists dc_f_organization
(orgid int,orgcode string,YEARMONTH string ,ZZDATE string,ORGNAME string,orglevel int,id int,ORGTAGGING int, createdate timestamp);insert into dc_f_organization
select a.orgid,a.orgcode,a.YEARMONTH,a.ZZDATE,n.ORGNAME,n.orglevel,n.id,n.ORGTAGGING,n.createdate
from dc_d_org_date a
left join DC_D_ORGANIZATION n on to_date(n.CREATEDATE)=a.ZZDATE and n.orgcode = a.orgcode;

– ############################## 持续优化方向:将上述两者合并到一起在 spark 中执行 ##############################
问题:可能是因为文件太小,spark 分区命令没有生效。set spark.sql.shuffle.partitions=300;
注意:SPARK中笛卡尔积需要改成 CROSS JOIN,否则语法报错。

二、优化CUBE表

  1、优化结果:原来1小时左右,优化后26分钟。总结:shuffle时间:16分钟,数据量	35.2亿任务含有宽依赖(group)被分成2个stage✔采用方案 1:改用spark执行。提高并行度。执行参数:spark-sql --master yarn --num-executors 100 --executor-memory 5G --executor-cores 3 --driver-memory 3Gstage 1 执行时间:11(partitions=300)stage 2 执行时间:15(partitions=200)设置分区数量,默认是200set spark.sql.shuffle.partitions=300;(理论上可以提高 stage 2 30%的速度,实际运行的时候可能会丢失executor,运行不稳定,不建议设置。)(原因可能是设置了虚拟核心数量。)方案 2:将case when的操作独立出一张表,去除部分重复扫描计算,减少cube阶段的计算量。抽取的时间增加了2分钟,节省的 shuffle 时间也是2分钟。没有意义。预处理时间:2-3分钟stage 1 执行时间:11stage 2 执行时间:13(节省的时间也是2-3分钟)方案 3:提高 shuffle 使用内存的占比 设置为60%执行参数:spark-sql --master yarn --num-executors 100 --executor-memory 5G --executor-cores 3 --driver-memory 3G --conf spark.storage.memoryFraction=0.3 --conf spark.shuffle.memoryFraction=0.5执行结果:效果不明显,多次执行时间也不太一致。方案 4:减少CUBE的维度数量, orgid 和 orgcode是一对一关系,可以去掉1个维度,计算完成之后再join执行结果:join 消耗的时间更久。2、采用的方案1:SPARK执行-- 执行参数 spark-sql --master yarn --num-executors 100 --executor-memory 5G --executor-cores 3 --driver-memory 3G-- set spark.sql.shuffle.partitions=300;drop table  if  exists dc_c_organization;create table if not exists dc_c_organization(YEARMONTH string,ZZDATE string,orgid int ,orgcode string,total int,provinceNum int,cityNum int,districtNum int, newDistrictNum int,townNum int,streetNum int,otherNum int,communityNum int,villageNum int,gridNum int);-- 如果用 hive 执行可以开启 combiner,map端先预聚合,减少reduce端的数据量和计算量,减少磁盘的IO和网络传输时间。-- set hive.map.aggr = true;-- set hive.groupby.mapaggr.checkinterval = 10000;-- ##############################	SPARK	#################################-- set spark.sql.shuffle.partitions=300;insert into dc_c_organizationselect  n.YEARMONTH,n.ZZDATE,n.orgid,n.orgcode,count(n.id) total,nvl(SUM(case when pt.displayname='省' then 1  else 0 end),0) AS provinceNum,nvl(SUM(case when pt.displayname='市' then 1  else 0 end),0) as cityNum,nvl(SUM(case when pt.displayname='县(区)' then 1  else 0 end),0) AS districtNum,(nvl(SUM(case when pt.displayname='县(区)'  then 1  else 0 end),0) -nvl(SUM(case when pt.displayname='县(区)' AND n.ORGTAGGING= 31 then 1  else 0 end),0)) as newDistrictNum,nvl(SUM(case when  ((n.ORGNAME LIKE '%乡%' OR n.ORGNAME LIKE '%镇%' OR n.ORGNAME LIKE '%乡镇%')) AND pt.displayname='乡镇(街道)' then 1  else 0 end),0) townNum,nvl(SUM(case when (n.ORGNAME LIKE '%街道%') AND pt.displayname='乡镇(街道)' then 1  else 0 end),0) streetNum,(nvl(SUM(case when pt.displayname='乡镇(街道)'then 1  else 0 end),0)-nvl(SUM(case when ((n.ORGNAME LIKE '%乡%' OR n.ORGNAME LIKE '%镇%' OR n.ORGNAME LIKE '%乡镇%') ) AND pt.displayname='乡镇(街道)' then 1  else 0 end),0)-nvl(SUM(case when (n.ORGNAME LIKE '%街道%' )  AND pt.displayname='乡镇(街道)' then 1  else 0 end),0)) otherNum,(nvl(SUM(case when pt.displayname='村(社区)' then 1  else 0 end),0)-nvl(SUM(case when ((n.ORGNAME LIKE '%村' OR n.ORGNAME LIKE '%村民委员会' OR n.ORGNAME LIKE '%农村工作中心站' OR n.ORGNAME LIKE '%村委会')) AND pt.displayname='村(社区)' then 1  else 0 end),0)) communityNum,nvl(SUM(case when ((n.ORGNAME LIKE '%村' OR n.ORGNAME LIKE '%村民委员会' OR n.ORGNAME LIKE '%农村工作中心站' OR n.ORGNAME LIKE '%村委会')) AND pt.displayname='村(社区)' then 1  else 0 end),0) villageNum,nvl(SUM(case when pt.displayname='片组片格'then 1  else 0 end),0) gridNumfrom dc_f_organization nleft join dc_d_property pt on n.orglevel = pt.idGROUP BY n.YEARMONTH,n.ZZDATE,n.orgid,n.orgcodeWITH CUBE;3、优化方案2:从业务逻辑上进行优化。(发现SQL逻辑中存在重复的计算)-- ############################	预处理:去除重复计算和减少CUBE的计算量	############################drop table if exists temp_dc_c_organization;create table temp_dc_c_organizationas selectn.yearmonth,n.zzdate,n.orgid,n.orgcode,n.id as id,case when pt.displayname='省' then 1  else 0 end as provincenum,case when pt.displayname='市' then 1  else 0 end as citynum,case when pt.displayname='县(区)' then 1  else 0 end as districtnum,case when pt.displayname='县(区)' and n.orgtagging= 31 then 1  else 0 end as old_districtnum,
【重复1case when ((n.orgname like '%乡%' or n.orgname like '%镇%' or n.orgname like '%乡镇%')) and pt.displayname='乡镇(街道)' then 1  else 0 end townnum,
【重复2case when (n.orgname like '%街道%') and pt.displayname='乡镇(街道)' then 1  else 0 end streetnum,case when pt.displayname='乡镇(街道)'then 1  else 0 end as total_streetnum_01,
【重复1case when ((n.orgname like '%乡%' or n.orgname like '%镇%' or n.orgname like '%乡镇%')) and pt.displayname='乡镇(街道)' then 1  else 0 end as total_streetnum_02,
【重复2case when (n.orgname like '%街道%') and pt.displayname='乡镇(街道)' then 1  else 0 end as total_streetnum_03,case when pt.displayname='村(社区)' then 1  else 0 end as communitynum_01,
【重复3case when ((n.orgname like '%村' or n.orgname like '%村民委员会' or n.orgname like '%农村工作中心站' or n.orgname like '%村委会')) and pt.displayname='村(社区)' then 1  else 0 end as communitynum_02,
【重复3case when ((n.orgname like '%村' or n.orgname like '%村民委员会' or n.orgname like '%农村工作中心站' or n.orgname like '%村委会')) and pt.displayname='村(社区)' then 1  else 0 end villagenum,case when pt.displayname='片组片格'then 1  else 0 end gridnumfromdc_f_organization nleft join dc_d_property pt on n.orglevel = pt.id;-- ############################	CUBE:节省的时间相当于预处理的时间。############################create table dc_c_organization_02as select  yearmonth,zzdate,orgid,count(id) total,sum(provincenum) as provincenum,sum(citynum) as citynum,sum(districtnum) as districtnum,sum(districtnum)-sum(old_districtnum) as newdistrictnum,sum(townnum) townnum,sum(streetnum) streetnum,sum(total_streetnum_01)-sum(townnum)-sum(streetnum) othernum,sum(communitynum_01)-sum(villagenum) communitynum,sum(villagenum) villagenum,sum(gridnum) gridnumfrom temp_dc_c_organization as ngroup by yearmonth, zzdate, orgid with cube;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/119857.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习和数据挖掘02-Gaussian Naive Bayes

概念 贝叶斯定理: 贝叶斯定理是概率中的基本定理,描述了如何根据更多证据或信息更新假设的概率。在分类的上下文中,它用于计算给定特征集的类别的后验概率。 特征独立性假设: 高斯朴素贝叶斯中的“朴素”假设是,给定…

《Python魔法大冒险》004第一个魔法程序

在图书馆的一个安静的角落,魔法师和小鱼坐在一张巨大的桌子前。桌子上摆放着那台神秘的笔记本电脑。 魔法师: 小鱼,你已经学会了如何安装魔法解释器和代码编辑器。是时候开始编写你的第一个Python魔法程序了! 小鱼:(兴奋地两眼放光)我准备好了! 魔法师: 不用担心,…

OPPO手机便签数据搬家到华为mate60Pro手机怎么操作

今年8月底,华为上线了本年度的旗舰手机——华为mate60Pro。有不少网友都在抢购这台手机,不过在拿到新手机之后,还有一件重要的事情要做,这就是把旧手机中比较重要的数据,例如图片、短信、通讯录、联系人、便签等数据搬…

【STM32】IIC的初步使用

IIC简介 物理层 连接多个devices 它是一个支持设备的总线。“总线”指多个设备共用的信号线。在一个 I2C 通讯总线中,可连接多个 I2C 通讯设备,支持多个通讯主机及多个通讯从机。 两根线 一个 I2C 总线只使用两条总线线路,一条双向串行数…

说说Omega架构

分析&回答 Omega架构我们暂且称之为混合数仓。 什么是ECS设计模式 在谈我们的解法的时候,必须要先提ECS的设计模式。 简单的说,Entity、Component、System分别代表了三类模型。 实体(Entity):实体是一个普通的对象。通常&#xff0c…

pandas数据分析之数据绘图

一图胜千言,将信息可视化(绘图)是数据分析中最重要的工作之一。它除了让人们对数据更加直观以外,还可以帮助我们找出异常值、必要的数据转换、得出有关模型的想法等等。pandas 在数据分析、数据可视化方面有着较为广泛的应用。本文…

python中super()用法

super关键字的用法 一、概述二、作用三、语法四、使用示例1.通过super() 来调用父类的__init__ 构造方法:2.通过supper() 来调用与子类同名的父类方法2.1 单继承2.2 多继承 一、概述 super() 是python 中调用父类(超类)的一种方法&#xff0…

iPhone 隔空投送使用指南:详细教程

本文介绍了如何在iPhone上使用隔空投送,包括如何在iOS 11到iOS 14的iPhone上启用它、发送文件以及接受或拒绝AirDrop发送给你的文件。对于iOS 7以上的旧款iPhone,提供了另一种方法。 如何打开隔空投送 你可以通过以下两种方式之一启动隔空投送功能:在“设置”应用程序或控…

C#安装“Windows 窗体应用(.NET Framework)”

目录 背景: 第一步: 第二步: 第三步: 总结: 背景: 如下图所示:在Visual Studio Installer创建新项目的时候,想要添加windows窗体应用程序,发现里面并没有找到Windows窗体应用(.NET Framework)模板,快捷搜索也没有发现&#…

解决小程序中textarea ios端样式不兼容的方法

问题描述 ,今天在调试小程序的时候有个需求需要textarea与标题对其,微信开发工具和安卓系统都没有问题 但是ios系统textarea存在内边距。出现不兼容的情况 解决方法:我们看官网的textarea的属性 textarea | uni-app官网 disable-default-p…

路径规划 | 图解Lazy Theta*算法(附ROS C++/Python/Matlab仿真)

目录 0 专栏介绍1 Theta*算法局限性2 Lazy Theta*算法原理3 Theta* VS. Lazy Theta*4 仿真实现4.1 ROS C实现4.2 Python实现4.3 Matlab实现 0 专栏介绍 🔥附C/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图…

计算机竞赛 基于深度学习的人脸专注度检测计算系统 - opencv python cnn

文章目录 1 前言2 相关技术2.1CNN简介2.2 人脸识别算法2.3专注检测原理2.4 OpenCV 3 功能介绍3.1人脸录入功能3.2 人脸识别3.3 人脸专注度检测3.4 识别记录 4 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的人脸专注度…

苹果Mac系统如何优化流畅的运行?提高运行速度

Mac系统的稳定性和流畅性一直备受大家称赞,这也是大多数人选择Mac的原因,尽管如此,我们仍不时地对Mac进行优化、调整,以使其比以前更快、更流畅地运行。以下是小编分享给各位的Mac优化方法,记得保存哦~ 一、释放被过度…

Java 中数据结构HashSet的用法

Java HashSet HashSet 基于 HashMap 来实现的,是一个不允许有重复元素的集合。 HashSet 允许有 null 值。 HashSet 是无序的,即不会记录插入的顺序。 HashSet 不是线程安全的, 如果多个线程尝试同时修改 HashSet,则最终结果是…

React原理 - React Reconciliation-上

目录 扩展学习资料 React Reconciliation Stack Reconciler【15版本、栈协调】 Stack Reconciler-事务性 事务性带来的弊端: 扩展学习资料 名称 链接 备注 官方文档 Reconciliation – React 英文 stack reconciler Implementation Notes – React 英文…

spark支持深度学习批量推理

背景 在数据量较大的业务场景中,spark在数据处理、传统机器学习训练、 深度学习相关业务,能取得较明显的效率提升。 本篇围绕spark大数据背景下的推理,介绍一些优雅的使用方式。 spark适用场景 大数据量自定义方法处理、类sql处理传统机器…

环保环卫行业案例 | 燕千云助力高能环境搭建数智化IT服务管理体系及平台

当前环境卫生问题在全球已引起前所未有的关注,而促进健康又成为环境与发展所关注的核心问题。随着数字化时代的到来,环保环卫行业呈现出多个发展趋势,随着业务系统规模的不断扩大,信息系统的运维问题也日益突出,需要得…

『Swift社区赠书第 1 期』- 『循序渐进 Vue.js 3.x 前端开发实战』

文章目录 关于作者内容介绍评论区抽三位小伙伴送书活动时间:截止到 2023-08-24 20:00:00 获奖名单 ps. 文末送书,送书为 Swift社区 额外福利 《循序渐进 Vue.js 3.x 前端开发实战》本书包含 42 集视频教学,完整源代码 PPT 课件。 Vue.js 3…

睿思BI实现杜邦分析

杜邦分析法(DuPont analysis)是一种分析企业财务状况的方法,得名于美国杜邦公司。该方法可以应用于销售业绩分析。 睿思BI实现杜邦分析效果如下: 效果演示地址:https://www.ruisitech.com/rsbi-ultimate/#/dashboard/…

Zookeeper 入门

第 1 章 Zookeeper 入门 1.1概述 Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将…