stable diffusion实践操作-宽高设置以及高清修复

系列文章目录

stable diffusion实践操作


文章目录

  • 系列文章目录
  • 前言
  • 一、SD宽高怎么设置?
    • 1.1 宽高历史
  • 二、高清修复
    • 1. 文生图中的高清修复
      • 1.按钮Hires.fix
      • 2.不同放大算法对比
        • 1.第一类
        • 2.第二类
        • 3.第三类
        • 4.第四类
        • 5.第五类
        • 6.第六类
        • 7.第七类
        • 8.第八类
        • 9.第九类
        • 10.第十类
        • 11.前10归纳
    • 2.图生图中的高清修复
      • 1.第一类Ultimeate SD upscale(需要安装插件)
        • 1. 插件安装与打开
        • 2.参数
        • 3.使用
      • 2.第二类 SDupscale
        • 1. 打开
        • 2. 原理
        • 3.参数
      • 2.第三类 SDupscale
        • 4.使用
    • 3.其它高清放大方法和工具以及小妙用
      • 1.打开
      • 2.参数
      • 3.使用
        • 1.打开
        • 2.设置参数
          • 1.缩放比例,缩放到
          • 2.放大算法1
          • 3.放大算法2
          • 4.放大算法2 可见度
          • 5.GFPGAN可见程度
          • 6.CodeFormer可见程度
          • 7.GFPGAN、CodeFormer两种区别
          • 8.CodeFormer权重
  • 总结
    • 1. 最好使用附加功能放大
    • 2. 两种人脸修复只能修复人脸,其余的修复不了。


前言

主要介绍SD的宽高设置以及高清修复

基础模型都是通过512512的图像集训练的,所以我们采用SD1.5模型的时候,宽高不要超过512512,否则,图像就会出现不可以控.

但是在实际工作中,我们需要更加高清图片怎么办,这就是本章的主要内容。


一、SD宽高怎么设置?

1.1 宽高历史

SD生成256256图片效果最好。512512是SD一直使用的画布大小。如果我们给一个大画布的时候,就很容易产生无法理解的内容,所以我们在使用SD2.0以前的模型时,宽高不要超过512*512,如果想要更加大的图片,可以通过高精度修复来进行修复。

二、高清修复

1. 文生图中的高清修复

1.按钮Hires.fix

相关参数:放大算法,高分迭代步数,重绘幅度,放大倍率,宽高调整

放大算法,webUI中默认提供了很多放大算法。
高清修复采样次数,设置为0时,采用默认步数,这个参数一般不用调整。
重绘幅度,决定算法对图像内容的保留程度,该值越高,放大后图像就比放大前图像差别越大,低值为修正原图,高值就会对原图进行不同程度的改写。

2.不同放大算法对比

在实际中也要根据不同模型来测试,不同风格的图片采用不同的放大算法和重绘幅度(0.5左右)。

1.第一类

下图是对比,可以看到,不同放大算法差异很大

2.第二类

3.第三类

4.第四类

5.第五类

6.第六类

7.第七类

8.第八类

9.第九类

10.第十类

放大对比

11.前10归纳

绿色的代表建议使用,黄色代表尝试,红色代表不建议使用

2.图生图中的高清修复

1.第一类Ultimeate SD upscale(需要安装插件)

1. 插件安装与打开

脚本中选择Ultimeate SD upscale,这个需要安装插件才能使用
插件名称位置:https://gitcode.net/ranting8323/ultimate-upscale-for-automatic1111

webUI 位置

2.参数

作者提供了官方文档:
https://github.com/Coyote-A/ultimate-upscale-for-automatic1111/wiki/FAQ
第一个,目标尺寸类型,Scale from image size按照图生图原始设置,custom size自定义
第二个,放大算法
第三个,重绘类型linear,chess(分块),none
第四个,接缝修复(没有明显接缝,就不要使用)
详细使用参考官方文档即可。

3.使用

2.第二类 SDupscale

1. 打开

2. 原理

它是将原图分解成一个个图块tiles,然后对每一块进行高清修复,最后再拼接起来。

3.参数

参数有3个,分块重叠像素宽度,放大倍数,放大算法

第一个参数,Tile overlap,使用SD放大时,分块处的像素重叠宽度,分块间重叠有助于图像合并时,产生明显接缝,官方默认设置64.

如果为0,那么接缝处非常明显

如果改为256,那么效果就比较好

第二个参数,放大倍数,这个没什么说的

第三个参数,放大算法

2.第三类 SDupscale

4.使用

按照下图三个框设置就可以了

3.其它高清放大方法和工具以及小妙用

1.打开

2.参数

特别强调重绘,重修是指对图片细节进行重新绘制.

3.使用

1.打开

当使用文生图或者图生图的时候,通过下面按键进行后处理,或者直接从电脑中拖入图片进行处理

2.设置参数

1.缩放比例,缩放到

一般用等比缩放

2.放大算法1
3.放大算法2

采用两种放大算法,最后叠加

4.放大算法2 可见度

第二种放大算法叠加后的强度,为0的时候,不采用算法2,使用1的时候完全由算法2处理

5.GFPGAN可见程度

GFPGAN是一种由腾讯PCG团队研发的先进人脸回复技术,从低质量回复高质量人脸的目标,相关论文为

PCG介绍

6.CodeFormer可见程度

新加坡南洋理工研发的人脸回复技术,从低质量的人脸恢复高质量的人脸,相关论文为

7.GFPGAN、CodeFormer两种区别

这两种算法只能修复人脸,对人脸外面的就没有什么用了

8.CodeFormer权重

总结

1. 最好使用附加功能放大

从效果上看文生图高清修复要比附加功能放大更加好一点

但是文生图放大耗费时间,实际中我们都采用附加功能放大功能。

2. 两种人脸修复只能修复人脸,其余的修复不了。

以上就是今天要讲的内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/119865.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解css3背景图边框

border-image知识点 重点理解 border-image-slice 设置的值将边框背景图分为9份,图像中间的舍弃,其他部分图像对应边框的相应区域放置,上右下左四角固定,border-image-repeat设置的是除四角外其他部分的显示方式。 截图来自菜鸟教…

文件包含漏洞及漏洞复现

文件包含漏洞 1. 文件包含概述 程序开发人员通常会把可重复使用函数或语句写到单个文件中,形成“封装”。在使用某个功能的时候,直接调用此文件,无需再次编写,提高代码重用性,减少代码量。这种调用文件的过程通常称为…

【AWS】实操-保护 Amazon S3 VPC 终端节点通信

文章目录 实验概览目标实验环境任务 1:探索并启动实验环境任务 1.1:探索 Amazon VPC 资源任务 1.2:探索 Amazon EC2 资源任务 1.3:创建 Amazon VPC 终端节点任务 1.4:连接私有 EC2 实例任务 1.5:探索 Amazo…

Nginx从入门到精通(超级详细)

文章目录 一、什么是Nginx1、正向代理2、反向代理3、负载均衡4、动静分离 二、centos7环境安装Nginx1、安装依赖2、下载安装包3、安装4、启动5、停止 三、Nginx核心基础知识1、nginx核心目录2、常用命令3、默认配置文件讲解4、Nginx虚拟主机-搭建前端静态服务器5、使用nignx搭建…

【设计模式】Head First 设计模式——桥模式 C++实现

设计模式最大的作用就是在变化和稳定中间寻找隔离点,然后分离它们,从而管理变化。将变化像小兔子一样关到笼子里,让它在笼子里随便跳,而不至于跳出来把你整个房间给污染掉。 设计思想 桥模式。将抽象部分(业务功能)与实现部分(平…

13.108.Spark 优化、Spark优化与hive的区别、SparkSQL启动参数调优、四川任务优化实践:执行效率提升50%以上

13.108.Spark 优化 1.1.25.Spark优化与hive的区别 1.1.26.SparkSQL启动参数调优 1.1.27.四川任务优化实践:执行效率提升50%以上 13.108.Spark 优化: 1.1.25.Spark优化与hive的区别 先理解spark与mapreduce的本质区别,算子之间(…

机器学习和数据挖掘02-Gaussian Naive Bayes

概念 贝叶斯定理: 贝叶斯定理是概率中的基本定理,描述了如何根据更多证据或信息更新假设的概率。在分类的上下文中,它用于计算给定特征集的类别的后验概率。 特征独立性假设: 高斯朴素贝叶斯中的“朴素”假设是,给定…

《Python魔法大冒险》004第一个魔法程序

在图书馆的一个安静的角落,魔法师和小鱼坐在一张巨大的桌子前。桌子上摆放着那台神秘的笔记本电脑。 魔法师: 小鱼,你已经学会了如何安装魔法解释器和代码编辑器。是时候开始编写你的第一个Python魔法程序了! 小鱼:(兴奋地两眼放光)我准备好了! 魔法师: 不用担心,…

OPPO手机便签数据搬家到华为mate60Pro手机怎么操作

今年8月底,华为上线了本年度的旗舰手机——华为mate60Pro。有不少网友都在抢购这台手机,不过在拿到新手机之后,还有一件重要的事情要做,这就是把旧手机中比较重要的数据,例如图片、短信、通讯录、联系人、便签等数据搬…

【STM32】IIC的初步使用

IIC简介 物理层 连接多个devices 它是一个支持设备的总线。“总线”指多个设备共用的信号线。在一个 I2C 通讯总线中,可连接多个 I2C 通讯设备,支持多个通讯主机及多个通讯从机。 两根线 一个 I2C 总线只使用两条总线线路,一条双向串行数…

说说Omega架构

分析&回答 Omega架构我们暂且称之为混合数仓。 什么是ECS设计模式 在谈我们的解法的时候,必须要先提ECS的设计模式。 简单的说,Entity、Component、System分别代表了三类模型。 实体(Entity):实体是一个普通的对象。通常&#xff0c…

pandas数据分析之数据绘图

一图胜千言,将信息可视化(绘图)是数据分析中最重要的工作之一。它除了让人们对数据更加直观以外,还可以帮助我们找出异常值、必要的数据转换、得出有关模型的想法等等。pandas 在数据分析、数据可视化方面有着较为广泛的应用。本文…

python中super()用法

super关键字的用法 一、概述二、作用三、语法四、使用示例1.通过super() 来调用父类的__init__ 构造方法:2.通过supper() 来调用与子类同名的父类方法2.1 单继承2.2 多继承 一、概述 super() 是python 中调用父类(超类)的一种方法&#xff0…

iPhone 隔空投送使用指南:详细教程

本文介绍了如何在iPhone上使用隔空投送,包括如何在iOS 11到iOS 14的iPhone上启用它、发送文件以及接受或拒绝AirDrop发送给你的文件。对于iOS 7以上的旧款iPhone,提供了另一种方法。 如何打开隔空投送 你可以通过以下两种方式之一启动隔空投送功能:在“设置”应用程序或控…

C#安装“Windows 窗体应用(.NET Framework)”

目录 背景: 第一步: 第二步: 第三步: 总结: 背景: 如下图所示:在Visual Studio Installer创建新项目的时候,想要添加windows窗体应用程序,发现里面并没有找到Windows窗体应用(.NET Framework)模板,快捷搜索也没有发现&#…

解决小程序中textarea ios端样式不兼容的方法

问题描述 ,今天在调试小程序的时候有个需求需要textarea与标题对其,微信开发工具和安卓系统都没有问题 但是ios系统textarea存在内边距。出现不兼容的情况 解决方法:我们看官网的textarea的属性 textarea | uni-app官网 disable-default-p…

路径规划 | 图解Lazy Theta*算法(附ROS C++/Python/Matlab仿真)

目录 0 专栏介绍1 Theta*算法局限性2 Lazy Theta*算法原理3 Theta* VS. Lazy Theta*4 仿真实现4.1 ROS C实现4.2 Python实现4.3 Matlab实现 0 专栏介绍 🔥附C/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图…

计算机竞赛 基于深度学习的人脸专注度检测计算系统 - opencv python cnn

文章目录 1 前言2 相关技术2.1CNN简介2.2 人脸识别算法2.3专注检测原理2.4 OpenCV 3 功能介绍3.1人脸录入功能3.2 人脸识别3.3 人脸专注度检测3.4 识别记录 4 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的人脸专注度…

苹果Mac系统如何优化流畅的运行?提高运行速度

Mac系统的稳定性和流畅性一直备受大家称赞,这也是大多数人选择Mac的原因,尽管如此,我们仍不时地对Mac进行优化、调整,以使其比以前更快、更流畅地运行。以下是小编分享给各位的Mac优化方法,记得保存哦~ 一、释放被过度…

Java 中数据结构HashSet的用法

Java HashSet HashSet 基于 HashMap 来实现的,是一个不允许有重复元素的集合。 HashSet 允许有 null 值。 HashSet 是无序的,即不会记录插入的顺序。 HashSet 不是线程安全的, 如果多个线程尝试同时修改 HashSet,则最终结果是…