【python】可视化

柱状图

matplotlib之pyplot模块之柱状图(bar():基础参数、外观参数)_plt.bar_mighty13的博客-CSDN博客

bar()的基础参数如下:

x:柱子在x轴上的坐标。浮点数或类数组结构。注意x可以为字符串数组!
height:柱子的高度,即y轴上的坐标。浮点数或类数组结构。
width:柱子的宽度。浮点数或类数组结构。默认值为0.8。
bottom:柱子的基准高度。浮点数或类数组结构。默认值为0。
align:柱子在x轴上的对齐方式。字符串,取值范围为{'center', 'edge'},默认为'center'。
'center':x位于柱子的中心位置。
'edge':x位于柱子的左侧。如果想让x位于柱子右侧,需要同时设置负width 以及align='edge'。

MODELsAUCAUC(error误差)
M10.8562674730.042804689
M20.903370090.04444241
M30.9305753810.043041211
import matplotlib.pyplot as plt
import numpy as np
import pandas as pdplt.rcParams['font.sans-serif'] = ['STKaiTi']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号data1 = pd.read_excel('C:\\Users\\ASUS\\Desktop\\data.xlsx', sheet_name='MOUSE')  # AUC
data2 = pd.read_excel('C:\\Users\\ASUS\\Desktop\\data.xlsx', sheet_name='humanSTD')  # AUC(误差)# 数据
data = data1['AUC']
errors = data2['AUC']
labels = ['M1', 'M2', 'M3']# 创建一个颜色列表,包含每个柱子对应的颜色
colors = ['skyblue', 'lightgreen', 'orange']
# 计算柱子的宽度,使它们没有间隙
bar_width = 1
# 创建直方图,并设置颜色
plt.figure(dpi=300)
plt.title('不同模型的AUC值')
# 绘制柱状图,并为每个数据系列设置标签
for i in range(len(data)):plt.bar(labels[i], data[i], yerr=errors[i], capsize=5, width=bar_width, color=colors[i], label=f'M{i + 1}')
# 添加数据标签
for i in range(len(data)):plt.text(labels[i], data[i] + 0.05, f'{data[i]:.3f}', ha='center')
# 添加标签和标题
plt.xlabel('模型')
plt.ylabel('AUC')
# 添加图例
plt.legend()
# 绘制散点图
for i in range(len(data)):plt.scatter(labels[i], data[i], c="black", zorder=2)
# 取出上边框和右边框
ax = plt.gca()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# 显示图形
plt.show()

 

要求:1.画出三个模型的AUC柱状图 2.每个柱子上要有数据标签 3.每个柱子上要有代表误差的误差条  4.要取出表格的上边框和右边框 5.在柱状图中间画一个点


如果需要加上legend图例,由于我们是直接用plt.bar()画出3个柱子,所以无法加上图例。所以我们需要借助for循环依次画上柱子并打上标签

# 绘制柱状图,并为每个数据系列设置标签
for i in range(len(data)):
    plt.bar(labels[i], data[i], yerr=errors[i], capsize=5, width=bar_width, color=colors[i], label=f'M{i + 1}')

import matplotlib.pyplot as plt
import numpy as np
import pandas as pdplt.rcParams['font.sans-serif'] = ['STKaiTi']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号data1 = pd.read_excel('C:\\Users\\ASUS\\Desktop\\data.xlsx', sheet_name='MOUSE')
data2 = pd.read_excel('C:\\Users\\ASUS\\Desktop\\data.xlsx', sheet_name='humanSTD')# 数据
data = data1['AUC']
errors = data2['AUC']
labels = ['M1', 'M2', 'M3']# 创建一个颜色列表,包含每个柱子对应的颜色
colors = ['skyblue', 'lightgreen', 'orange']
# 计算柱子的宽度,使它们没有间隙
bar_width = 1
# 创建直方图,并设置颜色
plt.figure(dpi=300)
plt.title('不同模型的AUC值')
# 绘制柱状图,并为每个数据系列设置标签
for i in range(len(data)):plt.bar(labels[i], data[i], yerr=errors[i], capsize=5, width=bar_width, color=colors[i], label=f'M{i + 1}')
# 添加数据标签
for i in range(len(data)):plt.text(labels[i], data[i] + 0.05, f'{data[i]:.3f}', ha='center')
# 添加标签和标题
plt.xlabel('模型')
plt.ylabel('AUC')
# 添加图例
plt.legend()
# 绘制散点图
for i in range(len(data)):plt.scatter(labels[i], data[i], c="black", zorder=2)
# 取出上边框和右边框
ax = plt.gca()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# 显示图形
plt.show()

多类别柱状图

饼图 

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['STKaiTi'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号plt.figure(num = 1,figsize = (10,10),dpi=200) # 设置画布
plt.title("饼图")  # 设置画布标题
plt.pie(x = [20,30,10,50],  # 数据explode = (0,0.05,0,0) ,  # 指定饼图某些部分的突出显示,即呈现爆炸式labels = ['A','B','C','D'],  # 添加标签colors = ['yellowgreen','gold','skyblue','coral'],  #自定义颜色shadow = True,  # 阴影autopct='%.2f%%',  #设置百分比的格式,这里保留两位小数pctdistance=0.8,  #设置百分比标签与圆心的距离labeldistance=0.5,  #设置标签与圆心的距离startangle=180,  #设置饼图的初始角度radius=0.8,  #设置饼图的半径counterclock=False,  #是否逆时针,这里设置为顺时针方向wedgeprops={'linewidth':1.5, 'edgecolor':'green'},  #设置饼图内外边界的属性值textprops={'fontsize':15, 'color':'black'} #设置文本标签的属性值)
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/120668.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕业设计 社区买菜系统 Vue+SpringBoot+MySQL

作者主页:Designer 小郑 作者简介:Java全栈软件工程师一枚,来自浙江宁波,负责开发管理公司OA项目,专注软件前后端开发、系统定制、远程技术指导。CSDN学院、蓝桥云课认证讲师,全栈领域优质创作者。 项目内容…

【深度学习实验】NumPy的简单用法

目录 一、NumPy介绍 1. 官网 2. 官方教程 二、实验内容 1. 导入numpy库 2. 打印版本号 3. arange 函数 4. array函数 5. reshape函数 6. 矩阵点乘(逐元素相乘) 7. 矩阵乘法 一、NumPy介绍 NumPy是一个常用于科学计算的Python库,尤…

手写一个简单爬虫--手刃豆瓣top250排行榜

#拿到页面面源代码 request #通过re来提取想要的有效信息 re import requests import re url"https://movie.douban.com/top250"headers{"user-agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/11…

【Vue3 知识第四讲】数据双向绑定、事件绑定、事件修饰符详解

文章目录 一、数据双向绑定二、事件绑定详解2.1 **Vue中的事件绑定指令**2.2 **事件函数的调用方式**2.3 **事件函数参数传递** 三、事件修饰符3.1 **Vue中常用的事件修饰符**3.2 **按键修饰符** 四、属性绑定五、类与样式的绑定5.1 class 类的绑定5.2 style 样式绑定 一、数据…

泛型的学习

泛型深入 泛型&#xff1a;可以在编译阶段约束操作的数据类型&#xff0c;并进行检查 泛型的格式&#xff1a;<数据类型> 注意&#xff1a;泛型只能支持引用数据类型 //没有泛型的时候&#xff0c;集合如何存储数据//如果我们没有给集合指定类型&#xff0c;默认认为…

VMWare vsphere配置虚拟机规则实例

在虚拟化平台&#xff0c;存在HA关系的虚拟机通常要求不能放置在同一物理机上以提升安全性&#xff0c;高业务互访问的虚拟机则需要放置在同一物理机上以提升性能&#xff0c;同一资源类型为高负荷的虚拟机需分散放置以平衡集群主机性能提升虚拟机效率&#xff0c;这些情况下就…

Pycharm配置及使用Git教程

文章目录 1. 安装PyCharm2. 安装Git3. 在PyCharm中配置Git插件4. 连接远程Gtilab仓库5. Clone项目代码6. 将本地文件提交到远程仓库6.1 git add6.2 git commit6.3 git push6.4 git pull 平时习惯在windows下开发&#xff0c;但是我们又需要实时将远方仓库的代码clone到本地&…

SpringMVC:从入门到精通

一、SpringMVC是什么 SpringMVC是Spring提供的一个强大而灵活的web框架&#xff0c;借助于注解&#xff0c;Spring MVC提供了几乎是POJO的开发模式【POJO是指简单Java对象&#xff08;Plain Old Java Objects、pure old java object 或者 plain ordinary java object&#xff0…

zookeeper教程

zookeeper教程 zookeeper简介zookeeper的特点及数据模型zookeeper下载安装zookeeper客户端命令zookeeper配置文件zookeeper服务器常用命令zookeeper可视化管理工具zkuizookeeper集群环境搭建zookeeper选举机制使用Java原生api操作zookeeper使用java zkclient库操作zookeeper使用…

文件上传漏洞-upload靶场5-12关

文件上传漏洞-upload靶场5-12关通关笔记&#xff08;windows环境漏洞&#xff09; 简介 ​ 在前两篇文章中&#xff0c;已经说了分析上传漏的思路&#xff0c;在本篇文章中&#xff0c;将带领大家熟悉winodws系统存在的一些上传漏洞。 upload 第五关 &#xff08;大小写绕过…

C#面试十问

1&#xff1a;C#中变量类型分为哪两种&#xff1f;它们的区别是什么&#xff1f;2&#xff1a;Class和Struct的区别&#xff1f;3&#xff1a;C#中类的修饰符和类成员的修饰符有哪些&#xff1f;4&#xff1a;面向对象的三个特征&#xff08;特点&#xff09;是什么&#xff1f…

MySQL MHA高可用配置及故障切换

目录 MHA MHA 的组成 MHA 的特点 MHA工作原理 故障切换时MHA会做的动作 MHA注意问题 搭建 MySQL MHA 修改Mysql主配置文件 Master 节点 Slave1 节点 Slave2 节点 创建软连接 配置 mysql 一主两从 安装MHA所有组件 配置无密码认证 manager 节点 master节点 slave…

【java】【项目实战】[外卖九]项目优化(缓存)

目录 一、问题说明 二、环境搭建 2.1 Git管理代码 2.1.1 创建本地仓库 2.1.2 创建远程仓库 2.1.3 创建分支--》推送到远程仓库 2.2 maven坐标 2.3 配置文件application.yml 2.4 配置类RedisConfig 三、缓存短信验证码 3.1 实现思路 3.2 代码改造 3.2.1 UserContro…

时序预测 | MATLAB实现EEMD-SSA-LSTM、EEMD-LSTM、SSA-LSTM、LSTM时间序列预测对比

时序预测 | MATLAB实现EEMD-SSA-LSTM、EEMD-LSTM、SSA-LSTM、LSTM时间序列预测对比 目录 时序预测 | MATLAB实现EEMD-SSA-LSTM、EEMD-LSTM、SSA-LSTM、LSTM时间序列预测对比预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 时序预测 | MATLAB实现EEMD-SSA-LSTM、E…

《向量数据库指南》——腾讯云向量数据库(Tencent Cloud VectorDB) SDK 正式开源

腾讯云向量数据库 SDK 宣布正式开源。根据介绍,腾讯云向量数据库(Tencent Cloud VectorDB)的 Python SDK 与 Java SDK 是基于数据库设计模型,遵循 HTTP 协议,将 API 封装成易于使用的 Python 与 Java 函数或类,为开发者提供了更加友好、更加便捷的数据库使用和管理方式。…

数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据...

全文链接:http://tecdat.cn/?p22813 本教程为读者提供了使用频率学派的广义线性模型&#xff08;GLM&#xff09;的基本介绍。具体来说&#xff0c;本教程重点介绍逻辑回归在二元结果和计数/比例结果情况下的使用&#xff0c;以及模型评估的方法&#xff08;点击文末“阅读原文…

Java版企业电子采购招标系统源码

一、立项管理 1、招标立项申请 功能点&#xff1a;招标类项目立项申请入口&#xff0c;用户可以保存为草稿&#xff0c;提交。 2、非招标立项申请 功能点&#xff1a;非招标立项申请入口、用户可以保存为草稿、提交。 3、采购立项列表 功能点&#xff1a;对草稿进行编辑&#x…

【Unity3D赛车游戏优化篇】【九】Unity中如何让汽车丝滑漂移?

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

软件测试人需要掌握的测试知识架构体系(上)

软件计划与可行性研究&#xff08;问题定义、可行性研究&#xff09;&#xff1b;需求分析&#xff1b;软件设计&#xff08;概要设计、详细设计&#xff09;&#xff1b;编码&#xff1b;软件测试&#xff1b;运行与维护。 一、软件的生命周期(SDLC) 1、生存周期划分 各阶段…

软路由ip的优势与劣势:了解其适用场景和限制

在网络技术的快速发展中&#xff0c;软路由IP作为一种灵活且功能强大的网络设备&#xff0c;越来越受到人们的关注。然而&#xff0c;正如任何技术一样&#xff0c;软路由IP也有其优势和劣势。本文将深入探讨软路由IP的优势、劣势以及其适用场景和限制&#xff0c;帮助你更好地…