自定义数据集 使用scikit-learn中SVM的包实现SVM分类

生成自定义数据集

生成一个简单的二维数据集,包含两类数据点,分别用不同的标签表示。

import numpy as np
import matplotlib.pyplot as plt# 生成数据
np.random.seed(42)
X = np.r_[np.random.randn(100, 2) - [2, 2], np.random.randn(100, 2) + [2, 2]]
y = [0] * 100 + [1] * 100# 可视化数据
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Custom Dataset')
plt.show()

使用SVM进行分类

接下来,使用scikit-learn中的SVC类来实现SVM分类。

from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建SVM分类器
clf = SVC(kernel='linear', C=1.0)# 训练模型
clf.fit(X_train, y_train)# 预测
y_pred = clf.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

可视化分类结果

为了更直观地查看SVM分类的效果,可以绘制决策边界。

# 绘制决策边界
def plot_decision_boundary(clf, X, y):x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),np.arange(y_min, y_max, 0.01))Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])Z = Z.reshape(xx.shape)plt.contourf(xx, yy, Z, alpha=0.8, cmap=plt.cm.Paired)plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, edgecolor='k')plt.xlabel('Feature 1')plt.ylabel('Feature 2')plt.title('SVM Decision Boundary')plt.show()# 绘制决策边界
plot_decision_boundary(clf, X_test, y_test)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/12312.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[mmdetection]fast-rcnn模型训练自己的数据集的详细教程

本篇博客是由本人亲自调试成功后的学习笔记。使用了mmdetection项目包进行fast-rcnn模型的训练,数据集是自制图像数据。废话不多说,下面进入训练步骤教程。 注:本人使用linux服务器进行展示,Windows环境大差不差。另外&#xff0…

对比uart iic spi 三种总线的使用

1.uart串口通信 1.1uart的通信总线方式 1.2查询开发板和数据手册对需要进行修改的串口进行设置 例如STM32MP157aaa 1.设置8bit数据位 2.设置无校验位 3.设置1bit停止位 4.设置波特率为115200 5.设置16倍过采样 7.使能发送器 TE 8.使能接收器 RE 9.使能串口 UE10.发送数据&…

【玩转 Postman 接口测试与开发2_016】第13章:在 Postman 中实现契约测试(Contract Testing)与 API 接口验证(上)

《API Testing and Development with Postman》最新第二版封面 文章目录 第十三章 契约测试与 API 接口验证1 契约测试的概念2 契约测试的工作原理3 契约测试的分类4 DeepSeek 给出的契约测试相关背景5 契约测试在 Postman 中的创建方法6 API 实例的基本用法7 API 实例的类型实…

java-(Oracle)-Oracle,plsqldev,Sql语法,Oracle函数

卸载好注册表,然后安装11g 每次在执行orderby的时候相当于是做了全排序,思考全排序的效率 会比较耗费系统的资源,因此选择在业务不太繁忙的时候进行 --给表添加注释 comment on table emp is 雇员表 --给列添加注释; comment on column emp.empno is 雇员工号;select empno,en…

尚硅谷课程【笔记】——大数据之Shell【一】

课程视频:【【尚硅谷】Shell脚本从入门到实战】 一、Shell概述 为什么要学习Shell? 1)需要看懂运维人员的Shell程序 2)偶尔编写一些简单的Shell程序来管理集群、提高开发效率 什么是Shell? 1)Shell是一…

pytorch实现长短期记忆网络 (LSTM)

人工智能例子汇总:AI常见的算法和例子-CSDN博客 LSTM 通过 记忆单元(cell) 和 三个门控机制(遗忘门、输入门、输出门)来控制信息流: 记忆单元(Cell State) 负责存储长期信息&…

CDDIS从2025年2月开始数据迁移

CDDIS 将从 2025 年 2 月开始将我们的网站从 cddis.nasa.gov 迁移到 earthdata.nasa.gov,并于 2025 年 6 月结束。 期间可能对GAMIT联网数据下载造成影响。

【Redis】主从模式,哨兵,集群

主从复制 单点问题: 在分布式系统中,如果某个服务器程序,只有一个节点(也就是一个物理服务器)来部署这个服务器程序的话,那么可能会出现以下问题: 1.可用性问题:如果这个机器挂了…

华为云kubernetes部署deepseek r1、ollama和open-webui(已踩过坑)

1 概述 ollama是一个管理大模型的一个中间层,通过它你可以下载并管理deepseek R1、llama3等大模型。 open-webui是一个web界面(界面设计受到chatgpt启发),可以集成ollama API、 OpenAI的 API。 用常见的web应用架构来类比&#x…

在Mac mini M4上部署DeepSeek R1本地大模型

在Mac mini M4上部署DeepSeek R1本地大模型 安装ollama 本地部署,我们可以通过Ollama来进行安装 Ollama 官方版:【点击前往】 Web UI 控制端【点击安装】 如何在MacOS上更换Ollama的模型位置 默认安装时,OLLAMA_MODELS 位置在"~/.o…

CSS 背景与边框:从基础到高级应用

CSS 背景与边框:从基础到高级应用 1. CSS 背景样式1.1 背景颜色示例代码:设置背景颜色 1.2 背景图像示例代码:设置背景图像 1.3 控制背景平铺行为示例代码:控制背景平铺 1.4 调整背景图像大小示例代码:调整背景图像大小…

数据思维错题知识点整理(复习)

小的知识点整理 目前常见的数据采集方案有什么。 埋点、可视化埋点、无埋点(无埋点并不是字面意思不埋点,其实也是一种埋点,只是让开发人员完全无感知,直接嵌入sdk,然后每个元素都能查看他们的情况,后续开…

PyQt4学习笔记2】QMainWindow

目录 一、创建 QMainWindow 组件 1. 创建工具栏 2. 创建停靠窗口 3. 设置状态栏 4. 设置中央窗口部件 二、QMainWindow 的主要方法 1. addToolBar() 2. addDockWidget() 3. setStatusBar() 4. setCentralWidget() 5. menuBar() 6. saveState() 和 restoreState() 三、QMainWind…

Linux:文件系统(软硬链接)

目录 inode ext2文件系统 Block Group 超级块(Super Block) GDT(Group Descriptor Table) 块位图(Block Bitmap) inode位图(Inode Bitmap) i节点表(inode Tabl…

ubuntu22.40安装及配置静态ip解决重启后配置失效

遇到这种错误,断网安装即可! 在Ubuntu中配置静态IP地址的步骤如下。根据你使用的Ubuntu版本(如 Netplan 或传统的 ifupdown),配置方法有所不同。以下是基于 Netplan 的配置方法(适用于Ubuntu 17.10及更高版…

手写MVVM框架-实现简单的数据代理

MVVM框架最显著的特点就是虚拟dom和响应式的数据、我们以Vue为例,分别实现data、computed、created、methods以及虚拟dom。 这一章我们先实现简单的响应式,修改数据之后在控制台打印。 我们将该框架命名为MiniVue。 首先我们需要创建MiniVue的类(src/co…

ESLint

ESLint ESLint 是一个针对 JS 的代码风格检查工具,当不满足其要求的风格时,会给予警告或错误。 官网:https://eslint.org/ 中文网:https://eslint.nodejs.cn/ 安装使用 在你的项目中安装 ESLint 包: npm install -…

kaggle视频行为分析1st and Future - Player Contact Detection

这次比赛的目标是检测美式橄榄球NFL比赛中球员经历的外部接触。您将使用视频和球员追踪数据来识别发生接触的时刻,以帮助提高球员的安全。两种接触,一种是人与人的,另一种是人与地面,不包括脚底和地面的,跟我之前做的这…

Chapter 6 -Fine-tuning for classification

Chapter 6 -Fine-tuning for classification 本章内容涵盖 引入不同的LLM微调方法准备用于文本分类的数据集修改预训练的 LLM 进行微调微调 LLM 以识别垃圾邮件评估微调LLM分类器的准确性使用微调的 LLM 对新数据进行分类 现在,我们将通过在大语言模型上对特定目标任…

【从零开始的LeetCode-算法】922. 按奇偶排序数组 II

给定一个非负整数数组 nums, nums 中一半整数是 奇数 ,一半整数是 偶数 。 对数组进行排序,以便当 nums[i] 为奇数时,i 也是 奇数 ;当 nums[i] 为偶数时, i 也是 偶数 。 你可以返回 任何满足上述条件的…