基于python实现微信接入ChatGpt进行自动回复
- 教程说明
- 下载和使用python库
- 如何下载python库
- 如何使用python库
- 导入python库
- chatgpt部分
- 申请openai的key
- python调用chatgpt的简单示例
- wxauto部分
- wxauto简单示例
- 整体实现
- 整体示例代码
教程说明
1.机器人无法取代真人聊天,本教程仅用于学习,使用机器人和别人聊天本身就是对朋友的不尊重,请谨慎使用
2.本教程为了让大家更清晰地理解,让大家更方便进行自定义开发,本教程分为三大模块,每一模块对相关的功能和操作都进行单独的说明,并且教程最后将功能模块进行了合并总结,呈现整体效果
3.本教程对相关的基础操作只做了简单的说明,如果对python没有任何经验的新手朋友,需要根据本文档的引导进行自行搜索,本文档只对本文档主题进行详细说明,如果有什么建议,可以在评论区留言,欢迎各路大神批评斧正!
4.本教程只用于个人学习,如有疏漏,尽情谅解
下载和使用python库
1.wxauto,实现微信窗口消息检测
2.openai,获取chatgpt返回数据
3.time,实现操作延时,并且获取时间数据
如何下载python库
方法一:通过pip指令下载,前提是python已经加入环境变量,打开cmd输入以下指令
首先
//首先输入以下指令下载相关的库pip install 库名
//比如说下载wxauto库
pip install wxauto
方法二:(通过pycharm演示)
如何使用python库
导入python库
然后在代码中使用相关的库方法就可以了,由于篇幅有限,在这里就不详细赘述,请自行搜索
chatgpt部分
1.首先你需要有一个openai账号,才可以进行以下操作
2.由于openai在亚太地区无法使用,并且属于国外网站,所以包括本章节的第一部分:申请openai的key,以及第二部分:python调用chatgpt的简单示例,都需要"魔法上网"才行
3.申请的免费key只有5美元的调用额度
申请openai的key
1.进入官网:openai
2. 接下来我们点击 api 即可:
3. 查找自己账户的 key:
我们依次点击 Personal ,View API keys
4. 创建自己的 key:
python调用chatgpt的简单示例
该示例可以实现连续对话功能
import openai# 初始化 OpenAI API 客户端
openai.api_key = "你的openai key"# 定义一个函数生成 ChatGPT 的回复
def generate_response(prompt):# 调用 OpenAI API 生成回复completions = openai.Completion.create(engine="text-davinci-003", # 指定使用的引擎名称prompt=prompt, # API 请求的提示信息max_tokens=1024, # API 响应的最大令牌数n=1, # API 请求的完成数stop=None, # API 响应的终止标志temperature=0.5, # API 请求的温度参数)# 从 API 响应中取得回复message = completions.choices[0].textreturn message# 初始化一个变量来存储对话上下文
context = ""# 开始一个死循环来接受用户输入
while True:# 提示用户输入信息user_input = input("你:")# 如果用户输入结束命令,退出循环if user_input in ["结束", "退出", "end", "exit"]:break# 把用户输入信息添加到对话上下文中context = context + user_input + "\n"# 调用 generate_response() 函数生成回复response = generate_response(context)# 显示 ChatGPT 的回复print("ChatGPT:" + response)# 把 ChatGPT 的回复添加到对话上下文中context = context + response + "\n"
wxauto部分
wxauto简单示例
# 首先,将wxauto模块导入到我们的代码块中。
from wxauto import *# 初始化我们已经登录的客户端对象WeChat。
wx_cli = WeChat()# 获取当前的客户端的联系人列表。
wx_cli.GetSessionList()# 输出当前所在的聊天窗口的信息。
messages = wx_cli.GetAllMessage
for message in messages:print('%s : %s' % (messages[0], messages[1]))# 获取到当前的聊天信息,还可以获取更多,使用LoadMoreMessage函数就可以实现。
wx_cli.LoadMoreMessage()
more_messages = wx_cli.GetAllMessage
for more_message in more_messages:print('%s : %s' % (more_message[0], more_message[1]))
整体实现
将openai库与wxauto库进行整合开发,实现了微信接入ChatGpt进行自动回复的功能
整体示例代码
from wxauto import *
import time
import pyautogui
import pyperclip
import openai# 获取当前微信客户端
wx = WeChat()
num = 0
# 获取会话列表
wx.GetSessionList()openai.api_key = "你申请的openai key"###############################
# 1、获取默认窗口聊天信息
###############################
# 定义一个函数生成 ChatGPT 的回复
def generate_response(prompt):# 调用 OpenAI API 生成回复completions = openai.Completion.create(engine="text-davinci-003", # 指定使用的引擎名称prompt=prompt, # API 请求的提示信息max_tokens=1024, # API 响应的最大令牌数n=1, # API 请求的完成数stop=None, # API 响应的终止标志temperature=0.5, # API 请求的温度参数)# 从 API 响应中取得回复message = completions.choices[0].textreturn message# 初始化一个变量来存储对话上下文
context = "请用中文回复"# def data(newdata):
# urldata = "https://api.ownth*ink.com/bot?appid=e94dc1b1833a7f57ceeeb593bddccd87&userid=1&spoken=" + newdata
# sess = requests.get(urldata)
# answer = sess.text
# answer = json.loads(answer)
# return answer["data"]["info"]["text"]# def get_default_window_messages(context):# if __name__ == '__main__':
while True:if num < 10:# 默认是微信窗口当前选中的窗口# 输出当前聊天窗口聊天消息msgs = WeChat()if msgs.GetLastMessage[0] != "二流摄影爱好者":print("检测到新消息")# 提示用户输入信息# 如果用户输入结束命令,退出循环# if user_input in ["结束", "退出", "end", "exit"]:# break# 把用户输入信息添加到对话上下文中context = context + msgs.GetLastMessage[1] + "\n"# 调用 generate_response() 函数生成回复response = generate_response(context)# 显示 ChatGPT 的回复print("ChatGPT:" + response)# 把 ChatGPT 的回复添加到对话上下文中context = context + response + "\n"print(msgs.GetLastMessage[0], msgs.GetLastMessage[1])# pyperclip.copy(response)# pyautogui.hotkey('ctrl', 'v')# time.sleep(10) # 延迟时间,模拟真人回复wx.SendMsg(response)# pyautogui.hotkey('enter')num += 1else:print("正在检测中")else:num = 0context = ""