数学建模竞赛常用代码总结-PythonMatlab

数学建模过程中有许多可复用的基础代码,在此对 python 以及 MATLAB 中常用代码进行简单总结,该总结会进行实时更新。

一、文件读取

python (pandas)

文件后缀名(扩展名)并不是必须的,其作用主要一方面是提示系统是用什么软件打开,另一方面提示文件内容格式。如.txt, .csv, .tsv 文件均为纯文本文件,只是 .csv, .tsv 说明了数据的分割方式分别为, 与 \t 。既然都是文本文件,那就都可用 pandas.read_csv 或 pandas.read_table 等进行读取,这里采用 pandas.read_csv 。

.txt 文件

import pandas as pd

tsvfile = pd.read_csv(‘filename.txt’)

tsvfile = pd.read_csv(‘filename.txt’,skiprows=1)#跳过首行

.csv 文件

import pandas as pd

tsvfile = pd.read_csv(‘filename.csv’)

tsvfile = pd.read_csv(‘filename.csv’,skiprows=1)#跳过表头

.tsv 文件

import pandas as pd

tsvfile = pd.read_csv(‘filename.tsv’, sep=‘\t’)

.json 文件

import pandas as pd

jsonfile = pd.read_json(‘filename.json’, orient = ‘records’)

.csv 文件转.json 文件

import csv

import json

csvfile = open(‘filename.tsv’,r)

jsonfile = open(‘filename.json’,w)

fieldnames = (“key1”,“key2”,“key3”)

reader = csv.DictReader(csvfile,fieldnames)

for row in reader:

json.dump(row,jsonfile)jsonfile.write('\\n')

.xlsx 文件

excel 是二进制文件,它保存有关工作簿中所有工作表的信息,也可对数据进行有关操作。

import pandas as pd

# 读取 Excel 数据,选取 sheet1 工作表

sheet_1 = pd.read_excel(‘demo.xlsx’, sheet_name=‘Sheet1’, na_values=‘n/a’)

# 打印 sheet 表名

print(pd.ExcelFile(‘listings.xlsx’).sheet_names)

# 打印数据头部

print(sheet_1.head())

.xlsx 文件转 .csv

import pandas as pd

def xlsx_to_csv_pd():

data_xls = pd.read_excel(‘demo.xlsx’, index_col=0)

data_xls.to_csv(‘demo.csv’, encoding=‘utf-8’)

.csv 文件转 .xlsx

import pandas as pd

def csv_to_xlsx_pd():

csv = pd.read_csv(‘1.csv’, encoding=‘utf-8’)

csv.to_excel(‘1.xlsx’, sheet_name=‘data’)

MATLAB

同样的原因,MATLAB 读取文本文件均可用 textscan 。

.txt 文件

clc;clear;

filename = ‘filename.txt’;

file = fopen(filename);%打开文件

columns = ‘s%s%s%s%s%s%’;%读几列就有几个’s%’

data = textscan(filename,columns,‘delimiter’, ’ ');%以制表符分隔

fclose(file);

.csv 文件

clc;clear;

filename = ‘filename.csv’;

file = fopen(filename);%打开文件

columns = ‘s%s%s%s%s%s%’;%读几列就有几个’s%’

data=textscan(filename,columns,‘delimiter’, ‘,’);%以 , 分隔

fclose(file);

.tsv 文件

clc;clear;

filename = ‘filename.tsv’;

file = fopen(filename);%打开文件

columns = ‘s%s%s%s%s%s%’;%读几列就有几个’s%’

data=textscan(filename,columns,‘delimiter’, ’ ');%以制表符分隔

fclose(file);

.json 文件

MATLAB 读取 .json 文件需要下载 jsonlab 包。

clc;clear;

addpath(‘E:\PIR\PIR_V3.0\jsonlab-1.5’); %添加jsonlab包的存放路径

filename = ‘filename.json’; %文件名称

jsonData = loadjson(filename);%jsonData是struct结构

data = jsonData.u’;

二、绘图

MATLAB

点状图

plot(xi,yi,‘>’,‘Color’,[x/255 x/255 x/255]);%右三角,颜色为(x,x,x)

%符号可为’o’,‘.’,‘+’,‘>’,'<'等

xlabel(‘x/x’)

ylabel(‘y/y’)

title(‘Title’)

set(gcf,‘unit’,‘normalized’,‘position’,[0.2,0.2,0.8,0.6]);%固定大小

折线图

xi= 1: 0.25:76;

yi = interp1(X,Y,xi,‘spline’);%插值,将步长由1变为0.25

plot(xi,yi,‘Color’,[x/255 x/255 x/255],‘LineWidth’,1);%颜色为(x,x,x),线条粗细为1

xlabel(‘x/x’)

ylabel(‘y/y’)

title(‘Title’)

set(gcf,‘unit’,‘normalized’,‘position’,[0.2,0.2,0.8,0.6]);%固定大小

条形图

y=[1 2 3,1 2 3];%分组条形图

tiledlayout(2,1)%指定纵横比

bar(y);

bar(x,y);

bar(y,‘stacked’);%与y=[1 2 3,1 2 3]结合,同一个柱形上分层显示

bar(x,y,0.6);%相对宽度控制间隔

bar(y,‘FaceColor’,[0 .5 .5],‘EdgeColor’,[0 .9 .9],‘LineWidth’,1.5);%多参数

y = [10 15 20; 30 35 40; 50 55 62];

b = bar(y);

b(3).FaceColor = [.2 .6 .5];%每组第三列设为绿色

其他功能

%绘制多张

figure(i);

%plot

hold on;

figure(i+1);

%plot

%多线同图

%plot

hold on;

%plot

python

点状图

import matplotlib.pyplot as plt

plt.rcParams[‘figure.figsize’] = (48.0, 30.0) # 设置figure_size尺寸

plt.plot(X,Y,‘.’)

plt.xlabel(“x-label”,fontproperties=zhfont,fontsize=‘32’)

plt.ylabel(“y-label”,fontproperties=zhfont,fontsize=‘32’)

plt.title(“title”,fontproperties=zhfont,fontsize=‘32’)

折线图

import matplotlib.pyplot as plt

plt.rcParams[‘figure.figsize’] = (48.0, 30.0) # 设置figure_size尺寸

plt.plot(X,Y)

plt.xlabel(“x-label”,fontproperties=zhfont,fontsize=‘32’)

plt.ylabel(“y-label”,fontproperties=zhfont,fontsize=‘32’)

plt.title(“title”,fontproperties=zhfont,fontsize=‘32’)

其他常用功能

# 绘制多张

plt.subplot(221) # 两行两列的第一个

plt.plot(X1,Y1,‘.’)

plt.subplot(222) # 两行两列的第二个

plt.plot(X2,Y2,‘.’)

plt.subplot(223) # 两行两列的第三个

plt.plot(X3,Y3,‘.’)

plt.subplot(224) # 两行两列的第四个

plt.plot(X4,Y4,‘.’)

# 多张同图

plt.plot(X1,Y1,‘.’)

plt.plot(X2,Y2,‘.’)

# 设置分辨率

## 绘制分辨率

plt.rcParams[‘figure.figsize’] = (24.0, 20.0) # 默认的像素为[6.0,4.0],分辨率为100,图片尺寸为 600&400

plt.rcParams[‘figure.dpi’] = 300 # 直接设置分辨率,一般使用这两种方式之一

## 保存分辨率

plt.rcParams[‘savefig.dpi’] = 300 # 预先设定保存图片像素

plt.savefig(‘demo.jpg’, dpi=200) # 保存时指定分辨率,一般使用这两种方式之一

# title 格式

## 该条(title 格式)参考`开码牛`的博客

plt.title(‘Interesting Graph’,fontsize=‘large’,fontweight=‘bold’) 设置字体大小与格式

plt.title(‘Interesting Graph’,color=‘blue’) 设置字体颜色

plt.title(‘Interesting Graph’,loc =‘left’) 设置字体位置

plt.title(‘Interesting Graph’,verticalalignment=‘bottom’) 设置垂直对齐方式

plt.title(‘Interesting Graph’,rotation=45) 设置字体旋转角度

plt.title(‘Interesting’,bbox=dict(facecolor=‘g’, edgecolor=‘blue’, alpha=0.65 )) 标题边框

常用配色

#5d7a9a#ec554a#ffad60#8bc24c#2d2d2d
#bc8420#593e1a#ffeb28#996699#0fff95
---------------------------END---------------------------

题外话

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

若有侵权,请联系删除

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/124249.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matlab 矩阵逆运算的条件数

目录 一、概述1、算法概述2、主要函数3、参考文献二、代码实现三、结果展示四、参考链接本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述 1、算法概述 条件数法是目前应用最为广泛的一种病态诊断方法。一个方阵…

VsCode备忘

上次简单学习了一下vscode的使用&#xff0c;结果好长时间没用&#xff0c;今天打开又全忘了。。。再记录一下吧 快捷键 CtrlShiftP 命令面板&#xff0c;查找命令&#xff0c;设置等等 Ctrl 打开集成终端&#xff0c;监视生成输出 Ctrl, 打开设置 CtrlP 转到文件,使用转到符…

如何用Python机器学习、深度学习提升气象、海洋、水文领域实践能力!!!

Python是功能强大、免费、开源&#xff0c;实现面向对象的编程语言&#xff0c;能够在不同操作系统和平台使用&#xff0c;简洁的语法和解释性语言使其成为理想的脚本语言。除了标准库&#xff0c;还有丰富的第三方库&#xff0c;Python在数据处理、科学计算、数学建模、数据挖…

ChatGPT是如何辅助高效撰写论文及使用ChatGPT注意事项

ChatGPT发布近1年&#xff0c;各大高校对它的态度也发生了极大转变&#xff0c;今年3月发布ChatGPT禁令的牛剑等世界顶级名校也在近期解除了ChatGPT禁令&#xff0c;发布了生成式人工智能使用指南。 ChatGPT一定程度上可以解放科研人员的劳动力&#xff0c;与其直接禁止不如教…

第 3 章 栈和队列(汉诺塔问题递归解法)

1. 背景说明 假设有 3 个分别命名为 X、Y 和 Z 的塔座&#xff0c;在塔座 X 上插有 n 个直径大小各不相同、依小到大编号为 1, 2&#xff0c;…&#xff0c;n 的圆盘。 现要求将 X 轴上的 n 个圆盘移至塔座 Z 上并仍按同样顺序叠排&#xff0c;圆盘移动时必须遵循下列规则&…

平板触控笔哪款好用?好用的第三方apple pencil

而对于那些把ipad当做学习工具的人而言&#xff0c;苹果Pencil就成了必备品。但因为苹果Pencil太贵了&#xff0c;不少的学生们买不起。因此&#xff0c;最佳的选择还是平替电容笔&#xff0c;今天在这里整理了一些高性价比的电容笔&#xff01; 一、挑选电容笔的要点&#xf…

软件设计师学习笔记9-进程调度

目录 1. PV操作 1.1进程的同步与互斥 1.1.1互斥 1.1.2同步 1.2 PV操作 1.2.1信号量 1.2.2 PV操作的概念 2.信号量与PV操作 2.1 PV操作与互斥模型 2.2 PV操作与同步模型 2.3 互斥与同步模型结合 3.前趋图与PV操作 1. PV操作 1.1进程的同步与互斥 1.1.1互斥 互斥&…

【已解决】pycharm 突然每次点击都开新页面,关不掉怎么办?

今天在 pycharm 中写代码&#xff0c;突然发现&#xff0c;新开的文件不再原来的页面上&#xff0c;而是新增了页面&#xff0c;导致整个屏幕全都是新开的页面&#xff0c;最难受的是&#xff0c;关不掉&#xff01; 无奈&#xff0c;我只能关闭 pycharm&#xff0c;重新双击…

谷歌Chrome庆祝15周年,推出全新设计!了解最新信息!

谷歌浏览器本月将满15岁&#xff0c;为了纪念这一时刻&#xff0c;它正在进行改造和升级。 这一点意义重大&#xff0c;因为Chrome在全球有数十亿人使用&#xff0c;因此谷歌所做的每一项改变都会对互联网以及这些人与互联网的互动方式产生巨大影响。即使你不使用Chrome或不关…

输运方程的推导

1 概述 对于流场中守恒的物理量&#xff0c;均可采用输运方程&#xff08;transport equation&#xff09;进行描述其随时间变化和在空间的分布规律。输运方程的通用形式为&#xff1a; 输运方程描述了流动过程中的物理量守恒&#xff0c;其包括瞬态&#xff08;transient&…

uView实现全屏选项卡

// 直接复制粘贴即可使用 <template><view><view class"tabsBox"><u-tabs-swiper ref"uTabs" :list"list":current"current"change"tabsChange":is-scroll"false"></u-tabs-swiper&g…

在VR全景中嵌入3D模型有哪些优势?

现阶段&#xff0c;很多商企都会引入VR全景展示来宣传推广自己的产品、服务以及环境&#xff0c;但是环境展示凸显的沉浸式体验只是 VR全景一部分的价值所在&#xff0c;商企使用VR全景还有一个优势就是互动性&#xff0c;通过丰富多样的互动性&#xff0c;让用户同VR场景中的物…

vscode html使用less和快速获取标签less结构

扩展插件里面搜索 css tree 插件 下载 使用方法 选择你要生成的标签结构然后按CTRLshiftp 第一次需要在输入框输入 get 然后选择 Generate CSS tree less结构就出现在这个里面直接复制到自己的less文件里面就可以使用了 在html里面使用less 下载 Easy LESS 插件 自己创建…

spring---第一篇

系列文章目录 文章目录 系列文章目录一、如何实现一个IOC容器二、spring是什么?一、如何实现一个IOC容器 1、配置文件配置包扫描路径 2、递归包扫描获取.class文件 3、反射、确定需要交给IOC管理的类 4、对需要注入的类进行依赖注入 配置文件中指定需要扫描的包路径 定义一些…

Android之 SVG绘制

一 SVG介绍 1.1 SVG&#xff08;Scalable Vector Graphics&#xff09;是可缩放矢量图形的缩写&#xff0c;它是一种图形格式&#xff0c;其中形状在XML中指定&#xff0c; 而XML又由SVG查看器呈现。 1.2 SVG可以区别于位图&#xff0c;放大可以做到不模糊&#xff0c;可以做…

【实战】React17+React Hook+TS4 最佳实践,仿 Jira 企业级项目(总结展望篇)

文章目录 一、项目起航&#xff1a;项目初始化与配置二、React 与 Hook 应用&#xff1a;实现项目列表三、TS 应用&#xff1a;JS神助攻 - 强类型四、JWT、用户认证与异步请求五、CSS 其实很简单 - 用 CSS-in-JS 添加样式六、用户体验优化 - 加载中和错误状态处理七、Hook&…

springboot 集成dubbo

上一篇我们一起认识了Dubbo与RPC&#xff0c;今天我们就来一起学习如何使用Dubbo&#xff0c;并将Dubbo集成到Spring Boot的项目中。我们来看下今天要使用到的软件及版本&#xff1a; 软件 版本 说明 Java 11 Spring Boot 2.7.13 Spring Boot 3.0版本开始&#xff0c;最…

【C#】泛型

【C#】泛型 泛型是什么 泛型是将类型作为参数传递给类、结构、接口和方法&#xff0c;这些参数相当于类型占位符。当我们定义类或方法时使用占位符代替变量类型&#xff0c;真正使用时再具体指定数据类型&#xff0c;以此来达到代码重用目的。 泛型特点 提高代码重用性一定…

去掉Egde浏览器选择文本弹出的搜索小按钮

去掉Egde浏览器选择文本弹出的搜索小按钮 小按钮 去掉&#xff1a;在设置中找到选择文本时的微型菜单&#xff0c;关闭【选择文本时显示迷你菜单】选项

Java LinkedList

简介 链表&#xff08;Linked list&#xff09;是一种常见的基础数据结构&#xff0c;是一种线性表&#xff0c;但是并不会按线性的顺序存储数据&#xff0c;而是在每一个节点里存到下一个节点的地址。 链表可分为单向链表和双向链表。 在Java程序设计语言中&#xff0c;所有…