【物联网】ARM核常用指令(详解):数据传送、计算、位运算、比较、跳转、内存访问、CPSR/SPSR

文章目录

  • 指令格式(重点)
    • 1. 立即数
    • 2. 寄存器位移
  • 一、数据传送指令
    • 1. MOV指令
    • 2. MVN指令
    • 3. LDR指令
  • 二、数据计算指令
    • 1. ADD指令
    • 1. SUB指令
    • 1. MUL指令
  • 三、位运算指令
    • 1. AND指令
    • 2. ORR指令
    • 3. EOR指令
    • 4. BIC指令
  • 四、比较指令
  • 五、跳转指令
    • 1. B/BL指令
    • 2. ldr指令
    • 练习
  • 六、内存访问指令
    • 1. 单内存访问指令
      • 练习
    • 2. 多内存访问指令
      • 示例
    • 3. 栈操作指令
      • 示例
  • 七、CPSR/SPSR操作指令
      • 练习


指令格式(重点)

在这里插入图片描述

1. 立即数

一个常数,该常数必须对应8位位图,即一个8位的常数通过,循环右移偶数位得到该数,该数
数为合法立即数。

在指令中表示方法:#数字,例如:#100

快速判定是否是合法立即数:

  • 首先将这个数转换为32bit的16进制形式,例如218=0xDA=0x000000DA
  • 除零外,仅有一位数为合法立即数
  • 除零外,仅有二位数,并且相邻(包括首尾,如0x1000000A)的为合法立即数。
  • 除零外,仅有三位数,并且相邻(包括中间有0相间,例如0x10800000,包括首尾相邻
    如:0x14000003),这三位数中,最高位取值仅能为1、2、3,最低位取值仅能为4、8、C
    中间位0x0~0xF。
    这种组合的为合法立即数。

2. 寄存器位移

将寄存器值读取之后,进行移位运算后,作为操作数2参与运算。支持的移位方式如下:

  • LSL(Logical shift Left)逻辑右移
  • LSR(Logical shift Right)逻辑左移
  • ASR(Arithmetic shift Right)算术右移
r0,lsr #4 表示r0 >>4
r0,lsr r1 表示r0 >>r1
#3,LsL #4 错误,只能是寄存器移位,不能是立即数移位

一、数据传送指令

1. MOV指令

格式:mov 目标寄存器,操作数2
功能:将操作数2的值赋值给目标寄存器

在这里插入图片描述

2. MVN指令

格式:mvn 目标寄存器,操作数2
功能:将操作2取反的值给目标寄存器

在这里插入图片描述

3. LDR指令

格式: LDR 目标寄存器,= 数据
功能: 完成任意的数据传送到目标寄存器
注意: 数据前面不能加#,因为此时数据不按立即数来处理

在这里插入图片描述

二、数据计算指令

1. ADD指令

格式: add 目标寄存器,操作数1操作数2
功能: 将操作数1加上操作数2的结果给目标寄存器
在这里插入图片描述

1. SUB指令

格式: sub 目标寄存器,操作数1操作数2
功能: 将操作数1减去操作数2的结果给目标寄存器

在这里插入图片描述

1. MUL指令

格式: mul 目标寄存器,操作1操作2
功能: 将操作数1乘以操作数2的结果存放在目标寄存器

注意:操作数1操作2必须都是寄存器,并且操作1的寄存器编号不能和目标寄存器一样

在这里插入图片描述

三、位运算指令

1. AND指令

格式: and 目标寄存器,操作数1操作数2
功能: 将操作数1按位与操作数2的结果存放在目标寄存器
在这里插入图片描述

2. ORR指令

格式: orr 目标寄存器,操作数1操作数2
功能: 将操作1按位或操作2的结果存放在目标寄存器

3. EOR指令

格式: eor 目标寄存器,操作1操作2
功能: 将操作数1按位异或操作数2的结果存放在目标寄存器

在这里插入图片描述

4. BIC指令

格式: bic 目标寄存器,操作1操作2
功能: 将操作数1按位与操作数2取反的结果存放在目标寄存器
目标寄存器 = 操作数1 & ~操作数2

在这里插入图片描述

四、比较指令

格式: cmp 寄存器,操作数2
等于寄存器减去操作数2
功能: 将寄存器的值与操作2比较,比较的结果会自动影响CPSR的NZCV

在这里插入图片描述

答案

在这里插入图片描述

五、跳转指令

1. B/BL指令

格式: B/BL 标签
功能: 跳到一个指定的标签,BL 跳转之前,将跳转前的PC的值保存在LR,跳转范围+/- 32M
在这里插入图片描述

NZCV 标志位

标志位含义
N (Negative)结果为负数(Rn < Rm)
Z (Zero)结果为 0(Rn == Rm)
C (Carry)发生借位(无符号比较时 Rn < Rm)
V (Overflow)溢出(有符号计算超出范围)

比较指令 + B 条件跳转

指令条件说明
BEQ labelZ == 1相等(Rn == Rm)时跳转
BNE labelZ == 0不相等(Rn ≠ Rm)时跳转
BGT labelZ == 0 且 N == V大于(Rn > Rm,有符号)时跳转
BGE labelN == V大于等于(Rn ≥ Rm,有符号)时跳转
BLT labelN ≠ V小于(Rn < Rm,有符号)时跳转
BLE labelZ == 1 或 N ≠ V小于等于(Rn ≤ Rm,有符号)时跳转
BHI labelC == 1 且 Z == 0大于(Rn > Rm,无符号)时跳转
BHS labelC == 1大于等于(Rn ≥ Rm,无符号)时跳转
BLO labelC == 0小于(Rn < Rm,无符号)时跳转
BLS labelC == 0 或 Z == 1小于等于(Rn ≤ Rm,无符号)时跳转

2. ldr指令

格式: ldr pc,= 标签名
功能: 将PC指针指闻标签表示的地址
在这里插入图片描述

练习

在这里插入图片描述

答案

在这里插入图片描述

六、内存访问指令

1. 单内存访问指令

LDR 将内存中的值加载到寄存器(读内存)
STR 将寄存器的内容写入内存(写内存)

寄存器间接寻址:寄存器的值是一个地址

LDR ro,[r1 ]     //r0 = *r1
STR ro,[ r1 ] //*r1 = ro

基址变址寻址:将基地址寄存器加上指令中给出的偏移量,得到数据存放的地址

  • A. 前索引
STR r0,[r1,#4] //*(r1 + 4)= r0
LDR r0,[r1,#4] //r0 =*(r1+ 4)
  • B. 后索引
STR r0,[r1],#4   //*r1=r0 &&r1=r1 + 4
LDR r0,[r1],#4   //r0=*r1 &&r1=r1 + 4
  • C. 自动索引
STR r0,[r1,#4]!    //*(r1+4)=r0&&r1=r1+4
LDR r0,[r1,#4]!    //r0=*(r1+4)&&r1 =r1+4

示范:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

练习

将1-10数据存放在基地址为0x4000,0000,将0x4000,0000起始地址的值拷贝到0x4000,0100

答案
在这里插入图片描述

将0x1234写到0x4000,0000,将0xabcd写到0x4000,0004,然后从这两个地址读取数据做案加,最终结果存放在r0

答案2
在这里插入图片描述

2. 多内存访问指令

LDM 将一块内存的数据,加载到多个寄存器中
STM 将多个寄存器的值,存储到一块内存

格式:

LDM{条件}{s}<MODE>基址寄存器{!},{Reglist}^
STM{条件}{s}<MODE>基址寄存器{!},{Reglist}^

mode说明
IA后增加地址
IB先增加地址
DA后减少地址
DB先减少地址

基址寄存器
用于放内存的起始地址

!
最后更新基址寄存器的值

Reglist

  • 多个寄存器,从小到大,中间用 , 隔开,如 {r0,r2,r3}{r0-r7,r10}
  • 寄存器号大的对应内存的高地址,寄存器号小的对应内存的低地址

^

  • 它存在,如果 Reglist 没有 pc 的时候,这个时候操作的寄存器是用户模式下的寄存器
  • LDM 指令中,有 PC 的时候,在数据传送的时候,会将 SPSR 的值拷贝到 CPSR,用于异常的返回

流程图:
在这里插入图片描述
在这里插入图片描述

示例

在这里插入图片描述

3. 栈操作指令

A. 进栈

stmfd sp!,{寄存器列表}

B. 出栈

Idmfd sp!,{寄存器列表}

注意
在对栈操作之前,必须先设置sp的值,进栈和出栈的方式一样,ATPCS标准规定满减栈

流程图:
在这里插入图片描述

堆栈指针指向最后压入的堆栈的有效数据项,称为满堆栈
堆栈指针指向下一个待压入数据的空位置,称为空堆栈

在这里插入图片描述

示例

在这里插入图片描述

七、CPSR/SPSR操作指令

A. 读操作

MRS Rn,CPSR/SPSR
将状态寄存器的值,读到通用寄存器中

B. 写操作

MSR CPSR/SPSR,Rn
将通用寄存器的值,写到状态寄存器

练习

A.写一段代码,将CPSR的第I(7)位清0,其他位不变(使能IRQ异常)
B.写一段代码,将CPSR的第I(7)位置1,其他位不变(禁用IRQ异常)

答案
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/12473.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nacos 的介绍和使用

1. Nacos 的介绍和安装 与 Eureka 一样&#xff0c;Nacos 也提供服务注册和服务发现的功能&#xff0c;Nacos 还支持更多元数据的管理&#xff0c; 同时具备配置管理功能&#xff0c;功能更丰富。 1.1. windows 下的安装和启动方式 下载地址&#xff1a;Release 2.2.3 (May …

【零基础到精通】小白如何自学网络安全

小白人群想学网安但是不知道从哪入手&#xff1f;一篇文章告诉你如何在4个月内吃透网安课程&#xff0c;掌握网安技术 一、基础阶段 1.了解网安相关基础知识 了解中华人民共和国网络安全法、熟知网络安全的相关概念&#xff1a;包括信息安全、风险管理、网络攻防原理、认证与…

架构规划之任务边界划分过程中承接分配

架构师在边界划分的过程中需要做什么事情呢&#xff1f;接下来&#xff0c;我们会讨论一些关于任务分配的 基础假设&#xff0c;以及由这些基础假设而带来的决策路径。 所谓任务边界划分&#xff0c;就是判定某个任务在多个承接方中&#xff0c;应该归属到哪个承接方的过程。…

如可安装部署haproxy+keeyalived高可用集群

第一步&#xff0c;环境准备 服务 IP 描述 Keepalived vip Haproxy 负载均衡 主服务器 Rip&#xff1a;192..168.244.101 Vip&#xff1a;192.168.244.100 Keepalive主节点 Keepalive作为高可用 Haproxy作为4 或7层负载均衡 Keepalived vip Haproxy 负载均衡 备用服务…

MySQL常用数据类型和表的操作

文章目录 (一)常用数据类型1.数值类2.字符串类型3.二进制类型4.日期类型 (二)表的操作1查看指定库中所有表2.创建表3.查看表结构和查看表的创建语句4.修改表5.删除表 (三)总代码 (一)常用数据类型 1.数值类 BIT([M]) 大小:bit M表示每个数的位数&#xff0c;取值范围为1~64,若…

DeepSeekMoE:迈向混合专家语言模型的终极专业化

一、结论写在前面 论文提出了MoE语言模型的DeepSeekMoE架构&#xff0c;目的是实现终极的专家专业化(expert specialization)。通过细粒度的专家分割和共享专家隔离&#xff0c;DeepSeekMoE相比主流的MoE架构实现了显著更高的专家专业化和性能。从较小的2B参数规模开始&#x…

寻迹传感器模块使用说明

产品用途&#xff1a; 1、电度表脉冲数据采样 2、传真机碎纸机纸张检测 3、障碍检测 4、黑白线检测 产品介绍: 1、采用 TCRT5000 红外反射传感器 2、检测反射距离&#xff1a;1mm~25mm 适用 3、比较器输出&#xff0c;信号干净&#xff0c;波形好&#xff0c;驱…

java项目验证码登录

1.依赖 导入hutool工具包用于创建验证码 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.5.2</version></dependency> 2.测试 生成一个验证码图片&#xff08;生成的图片浏览器可…

Baklib探讨如何通过内容中台提升组织敏捷性与市场竞争力

内容概要 在数字化转型的浪潮中&#xff0c;内容中台已经成为企业提升市场响应速度和竞争力的关键所在。内容中台不仅是信息处理的集结地&#xff0c;更是促进资源高效整合和灵活应用的重要平台。通过构建一个高效的内容中台架构&#xff0c;企业能够更好地应对不断变化的市场…

Java基础——分层解耦——IOC和DI入门

目录 三层架构 Controller Service Dao ​编辑 调用过程 面向接口编程 分层解耦 耦合 内聚 软件设计原则 控制反转 依赖注入 Bean对象 如何将类产生的对象交给IOC容器管理&#xff1f; 容器怎样才能提供依赖的bean对象呢&#xff1f; 三层架构 Controller 控制…

Spring中@Conditional注解详解:条件装配的终极指南

一、为什么要用条件装配&#xff1f; 在实际开发中&#xff0c;我们经常需要根据不同的运行环境、配置参数或依赖情况动态决定是否注册某个Bean。例如&#xff1a; 开发环境使用内存数据库&#xff0c;生产环境连接真实数据库 当存在某个类时才启用特定功能 根据配置文件开关…

Redis代金卷(优惠卷)秒杀案例-多应用版

Redis代金卷(优惠卷)秒杀案例-单应用版-CSDN博客 上面这种方案,在多应用时候会出现问题,原因是你通过用户ID加锁 但是在多应用情况下,会出现两个应用的用户都有机会进去 让多个JVM使用同一把锁 这样就需要使用分布式锁 每个JVM都会有一个锁监视器,多个JVM就会有多个锁监视器…

ros 发布Topic

1、确定话题名称和消息类型 自定义话题名称&#xff0c;消息类型根据发送消息需要从std_msgs中查找确定 2、在main函数中通过NodeHander发布话题 // 创建一个NodeHandle对象&#xff0c;用于与ROS系统进行交互ros::NodeHandle nh;// 创建一个Publisher对象&#xff0c;用于发…

86.(2)攻防世界 WEB PHP2

之前做过&#xff0c;回顾一遍&#xff0c;详解见下面这篇博客 29.攻防世界PHP2-CSDN博客 既然是代码审计题目&#xff0c;打开后又不显示代码&#xff0c;肯定在文件里 <?php // 首先检查通过 GET 请求传递的名为 "id" 的参数值是否严格等于字符串 "admi…

毕业设计:基于深度学习的高压线周边障碍物自动识别与监测系统

目录 前言 课题背景和意义 实现技术思路 一、算法理论基础 1.1 卷积神经网络 1.2 目标检测算法 1.3 注意力机制 二、 数据集 2.1 数据采集 2.2 数据标注 三、实验及结果分析 3.1 实验环境搭建 3.2 模型训练 3.2 结果分析 最后 前言 &#x1f4c5;大四是整个大学…

AI取代人类?

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

刷题记录 动态规划-7: 63. 不同路径 II

题目&#xff1a;63. 不同路径 II 难度&#xff1a;中等 给定一个 m x n 的整数数组 grid。一个机器人初始位于 左上角&#xff08;即 grid[0][0]&#xff09;。机器人尝试移动到 右下角&#xff08;即 grid[m - 1][n - 1]&#xff09;。机器人每次只能向下或者向右移动一步。…

深度求索DeepSeek横空出世

真正的强者从来不是无所不能&#xff0c;而是尽我所能。多少有关输赢胜负的缠斗&#xff0c;都是直面本心的搏击。所有令人骄傲振奋的突破和成就&#xff0c;看似云淡风轻寥寥数语&#xff0c;背后都是数不尽的焚膏继晷、汗流浃背。每一次何去何从的困惑&#xff0c;都可能通向…

51c视觉~CV~合集10

我自己的原文哦~ https://blog.51cto.com/whaosoft/13241694 一、CV创建自定义图像滤镜 热图滤镜 这组滤镜提供了各种不同的艺术和风格化光学图像捕捉方法。例如&#xff0c;热滤镜会将图像转换为“热图”&#xff0c;而卡通滤镜则提供生动的图像&#xff0c;这些图像看起来…

【论文复现】粘菌算法在最优经济排放调度中的发展与应用

目录 1.摘要2.黏菌算法SMA原理3.改进策略4.结果展示5.参考文献6.代码获取 1.摘要 本文提出了一种改进粘菌算法&#xff08;ISMA&#xff09;&#xff0c;并将其应用于考虑阀点效应的单目标和双目标经济与排放调度&#xff08;EED&#xff09;问题。为提升传统粘菌算法&#xf…