计算机竞赛 基于深度学习的人脸表情识别

文章目录

  • 0 前言
  • 1 技术介绍
    • 1.1 技术概括
    • 1.2 目前表情识别实现技术
  • 2 实现效果
  • 3 深度学习表情识别实现过程
    • 3.1 网络架构
    • 3.2 数据
    • 3.3 实现流程
    • 3.4 部分实现代码
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的人脸表情识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 技术介绍

1.1 技术概括

面部表情识别技术源于1971年心理学家Ekman和Friesen的一项研究,他们提出人类主要有六种基本情感,每种情感以唯一的表情来反映当时的心理活动,这六种情感分别是愤怒(anger)、高兴(happiness)、悲伤
(sadness)、惊讶(surprise)、厌恶(disgust)和恐惧(fear)。

尽管人类的情感维度和表情复杂度远不是数字6可以量化的,但总体而言,这6种也差不多够描述了。

在这里插入图片描述

1.2 目前表情识别实现技术

在这里插入图片描述
在这里插入图片描述

2 实现效果

废话不多说,先上实现效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3 深度学习表情识别实现过程

3.1 网络架构

在这里插入图片描述
面部表情识别CNN架构(改编自 埃因霍芬理工大学PARsE结构图)

其中,通过卷积操作来创建特征映射,将卷积核挨个与图像进行卷积,从而创建一组要素图,并在其后通过池化(pooling)操作来降维。

在这里插入图片描述

3.2 数据

主要来源于kaggle比赛,下载地址。
有七种表情类别: (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).
数据是48x48 灰度图,格式比较奇葩。
第一列是情绪分类,第二列是图像的numpy,第三列是train or test。

在这里插入图片描述

3.3 实现流程

在这里插入图片描述

3.4 部分实现代码

import cv2import sysimport jsonimport numpy as npfrom keras.models import model_from_jsonemotions = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral']cascPath = sys.argv[1]faceCascade = cv2.CascadeClassifier(cascPath)noseCascade = cv2.CascadeClassifier(cascPath)# load json and create model archjson_file = open('model.json','r')loaded_model_json = json_file.read()json_file.close()model = model_from_json(loaded_model_json)# load weights into new modelmodel.load_weights('model.h5')# overlay meme facedef overlay_memeface(probs):if max(probs) > 0.8:emotion = emotions[np.argmax(probs)]return 'meme_faces/{}-{}.png'.format(emotion, emotion)else:index1, index2 = np.argsort(probs)[::-1][:2]emotion1 = emotions[index1]emotion2 = emotions[index2]return 'meme_faces/{}-{}.png'.format(emotion1, emotion2)def predict_emotion(face_image_gray): # a single cropped faceresized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)# cv2.imwrite(str(index)+'.png', resized_img)image = resized_img.reshape(1, 1, 48, 48)list_of_list = model.predict(image, batch_size=1, verbose=1)angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]return [angry, fear, happy, sad, surprise, neutral]video_capture = cv2.VideoCapture(0)while True:# Capture frame-by-frameret, frame = video_capture.read()img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY,1)faces = faceCascade.detectMultiScale(img_gray,scaleFactor=1.1,minNeighbors=5,minSize=(30, 30),flags=cv2.cv.CV_HAAR_SCALE_IMAGE)# Draw a rectangle around the facesfor (x, y, w, h) in faces:face_image_gray = img_gray[y:y+h, x:x+w]filename = overlay_memeface(predict_emotion(face_image_gray))print filenamememe = cv2.imread(filename,-1)# meme = (meme/256).astype('uint8')try:meme.shape[2]except:meme = meme.reshape(meme.shape[0], meme.shape[1], 1)# print meme.dtype# print meme.shapeorig_mask = meme[:,:,3]# print orig_mask.shape# memegray = cv2.cvtColor(orig_mask, cv2.COLOR_BGR2GRAY)ret1, orig_mask = cv2.threshold(orig_mask, 10, 255, cv2.THRESH_BINARY)orig_mask_inv = cv2.bitwise_not(orig_mask)meme = meme[:,:,0:3]origMustacheHeight, origMustacheWidth = meme.shape[:2]roi_gray = img_gray[y:y+h, x:x+w]roi_color = frame[y:y+h, x:x+w]# Detect a nose within the region bounded by each face (the ROI)nose = noseCascade.detectMultiScale(roi_gray)for (nx,ny,nw,nh) in nose:# Un-comment the next line for debug (draw box around the nose)#cv2.rectangle(roi_color,(nx,ny),(nx+nw,ny+nh),(255,0,0),2)# The mustache should be three times the width of the nosemustacheWidth =  20 * nwmustacheHeight = mustacheWidth * origMustacheHeight / origMustacheWidth# Center the mustache on the bottom of the nosex1 = nx - (mustacheWidth/4)x2 = nx + nw + (mustacheWidth/4)y1 = ny + nh - (mustacheHeight/2)y2 = ny + nh + (mustacheHeight/2)# Check for clippingif x1 < 0:x1 = 0if y1 < 0:y1 = 0if x2 > w:x2 = wif y2 > h:y2 = h# Re-calculate the width and height of the mustache imagemustacheWidth = (x2 - x1)mustacheHeight = (y2 - y1)# Re-size the original image and the masks to the mustache sizes# calcualted abovemustache = cv2.resize(meme, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask = cv2.resize(orig_mask, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask_inv = cv2.resize(orig_mask_inv, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)# take ROI for mustache from background equal to size of mustache imageroi = roi_color[y1:y2, x1:x2]# roi_bg contains the original image only where the mustache is not# in the region that is the size of the mustache.roi_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)# roi_fg contains the image of the mustache only where the mustache isroi_fg = cv2.bitwise_and(mustache,mustache,mask = mask)# join the roi_bg and roi_fgdst = cv2.add(roi_bg,roi_fg)# place the joined image, saved to dst back over the original imageroi_color[y1:y2, x1:x2] = dstbreak#     cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)#     angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)#     text1 = 'Angry: {}     Fear: {}   Happy: {}'.format(angry, fear, happy)#     text2 = '  Sad: {} Surprise: {} Neutral: {}'.format(sad, surprise, neutral)## cv2.putText(frame, text1, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# cv2.putText(frame, text2, (50, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# Display the resulting framecv2.imshow('Video', frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# When everything is done, release the capturevideo_capture.release()cv2.destroyAllWindows()

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/126725.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#使用proto

写多了go代码&#xff0c;被go mod tidy惯坏了&#xff0c;还以为全天下的都很好用呢&#xff0c;结果发现并不是这样。尤其是项目组的proto还是又封了个工具直接就能跑得&#xff0c;导致以为没那么复杂的事情变得复杂了起来。是有两套生成的规则&#xff0c;时间有点晚&#…

Leetcode 1572.矩阵对角线元素之和

给你一个正方形矩阵 mat&#xff0c;请你返回矩阵对角线元素的和。 请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 示例 1&#xff1a; 输入&#xff1a;mat [[1,2,3],[4,5,6],[7,8,9]] 输出&#xff1a;25 解释&#xff1a;对角线的和为&#xff…

Boost电路实战详解!(高效率同步整流,PID闭环追踪)

文章目录 寄语什么是BOOST电路BOOST同步升压电路设计要求设计方案驱动电路电压采样电路 总体电路代码实物图总结 寄语 提示&#xff1a;若想实战演练&#xff0c;请先熟悉文章操作流程哦&#xff0c;不然会有危险&#xff01;&#xff01; 我建了一个群&#xff0c;分享我个人…

Hadoop生态圈中的Hive数据仓库技术

Hadoop生态圈中的Hive数据仓库技术 一、Hive数据仓库的基本概念二、Hive的架构组成三、Hive和数据库的区别四、Hive的安装部署五、Hive的基本使用六、Hive的元数据库的配置问题七、Hive的相关配置项八、Hive的基本使用方式1、Hive的命令行客户端的使用2、使用hiveserver2方法操…

Inno Setup 打包的文件以管理员权限运行

在 Inno Setup 安装目录中找到文件 SetupLdr.e32&#xff0c;用软件 ResourceHacker 打开。如下图&#xff0c;点开清单&#xff0c;找到 <requestedExecutionLevel level"asInvoker" uiAccess"false"/></requestedPrivileges>改为 <requ…

hadoop-MapReduce

分布式计算模型MapReduce 1.理解MapReduce设计思想 2.理解MapReduce分布式计算的基本原理 3.掌握使用Java进行MapReduce编程 4.掌握在Hadoop集群中提交MapReduce任务 1. MapReduce设计思想 1.1 什么是MapReduce 1&#xff09;MapReduce是一个分布式计算框架 它将大型数据操作…

【MySQL】数据库基础知识

本文基于Linux的MySQL 文章目录 一. 什么是数据库二. 主流数据库三. 服务器&#xff0c;数据库和表的关系四. MySQL架构五. SQL语句分类结束语 一. 什么是数据库 数据库本质是对数据内容存储的一套解决方案 如何理解呢&#xff1f; 首先&#xff0c;说到数据内容存储&#xff…

解决防火墙导致虚拟机不能ping通宿主机的问题

今天&#xff0c;无缘无故的&#xff0c;虚拟机突然用不了&#xff0c;网络连上不了&#xff0c;一番折腾翻找&#xff0c;最后才发现&#xff0c;是因为虚拟机ping不同宿主主机了&#xff0c;连网关都ping不通了&#xff0c;但是&#xff0c;宿主主机却可以ping通虚拟机 。 最…

element-ui dialog弹窗 设置点击空白处不关闭

根据官网提供方法 场景&#xff1a;vue实现的网站有两个弹窗同时出现时&#xff0c;关闭报警&#xff0c;批量进度条弹窗也关闭了&#xff0c; 1、每一个页面都有可能出现的报警弹窗&#xff0c; 2、页面a批量操控硬件添加操作的进度条弹窗 开始以为是因为点击报警弹窗&#…

高效数据湖构建与数据仓库融合:大规模数据架构最佳实践

文章目录 数据湖和数据仓库&#xff1a;两大不同理念数据湖数据仓库 数据湖与数据仓库的融合统一数据目录数据清洗和转换数据安全和权限控制数据分析和可视化 数据湖与数据仓库融合的优势未来趋势云原生数据湖自动化数据处理边缘计算与数据湖融合 结论 &#x1f389;欢迎来到云…

利用python进行视频下载并界面播放快速下载素材

工具&#xff1a;python designer&#xff08;python自带&#xff09;:UI界面设计工具 VLC&#xff1a;视频播放工具 需要的库如下&#xff1a; import os,platform os.environ[PYTHON_VLC_MODULE_PATH] "./vlc-3.0.14" import vlc from 脚本 import Player from …

STM32 硬件IIC 控制OLED I2C卡死问题

#更新通知&#xff1a;2023-09-06 STM32L151 固件库 使用I2C 太难了&#xff0c;又宕机了&#xff0c;建议不要在固件库版本上尝试硬件IIC 了&#xff0c;一般人真用不了&#xff0c;直接使用软件模拟的&#xff0c;或者不要使用固件库了&#xff0c;用HAL 库吧&#xff0c;据说…

APP启动优化Android篇

背景 为什么重提启动优化&#xff1f;首先&#xff0c;用户进入APP唯一的路径就是启动&#xff0c;这是体验核心链路的第一环。启动分为冷启动、热启动和温启动&#xff0c;本文中「启动」一词如果没有特别说明&#xff0c;均为冷启动。启动时间过长&#xff0c;会造成用户流失…

C++内存泄露

目录 1.什么是内存泄露 2.内存泄露的危害 3.如何解决内存泄露等相关的问题 1.什么是内存泄露 在C/C中 &#xff0c;我们申请了资源&#xff0c;因为一些原因忘记对申请的资源进行释放&#xff0c;或者因为异常安全等问题没有进行释放就会造成内存泄露的。 2.内存泄露的危害…

【好书推荐】《速学Linux:系统应用从入门到精通》

目录 前言一、为什么学习Linux系统二、Linux系统的应用领域&#xff11;.Linux在服务器的应用&#xff12;.嵌入式Linux的应用&#xff13;.桌面Linux的应用 三、Linux的版本选择1、经验人士使用的Debian2、以桌面应用为主的Ubuntu3、以经典桌面配置为主的Mint4、社区企业操作系…

【Docker】用Dockerfile制作个人的镜像文件

作者简介&#xff1a; 辭七七&#xff0c;目前大一&#xff0c;正在学习C/C&#xff0c;Java&#xff0c;Python等 作者主页&#xff1a; 七七的个人主页 文章收录专栏&#xff1a; 七七的闲谈 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f…

《DevOps实践指南》- 读书笔记(一)

DevOps实践指南 Part 1 DevOps 介绍精益运动敏捷宣言 1. 敏捷、持续交付和三步法1.1 制造业价值流1.2 技术价值流1.2.1 聚焦于部署前置时间1.2.2 关注返工指标——%C/A 1.3 三步工作法&#xff1a;DevOps 的基础原则 2. 第一步&#xff1a;流动原则2.1 使工作可见2.2 限制制品数…

力扣|找出和所对应的两数的下标

从零开始刷力扣&#xff08;bushi 题目放在这&#xff1a; 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出和为目标值target的两个整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一…

提升你的Android开发技能:从AR/VR沉浸到UI设计和故障排除

文章目录 探索最新AR/VR应用在教育、游戏、医疗等领域的应用教育领域游戏领域医疗领域 深入了解Android内存管理与性能优化的方法与技巧垃圾回收机制内存泄漏使用弱引用避免过度渲染内存优化图像优化延迟加载Android中的调试技术应用程序分析 分享如何提高Android应用的易用性和…

【算法专题突破】滑动窗口 - 长度最小的子数组(9)

目录 1. 题目解析 2. 算法原理 3. 代码编写 写在最后&#xff1a; 1. 题目解析 题目链接&#xff1a;209. 长度最小的子数组 - 力扣&#xff08;Leetcode&#xff09; 要注意的是&#xff0c;题目给的是正整数&#xff0c; 而题目要求并不难理解&#xff0c;就是找最短的…