opencv识别一张图片的多个红框,并截取红框的内容

需求

 需要获取图片的红框的内容,实体的图片我就不放了

获取红框

先截取获得图片的多个轮廓

import cv2  
import numpy as np  # 加载图像并转换为灰度图像  
image = cv2.imread('image6.jpg')  
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  # 应用高斯模糊以减少噪声  
blur = cv2.GaussianBlur(gray, (5, 5), 0)  # 应用HSV颜色空间转换  
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)  
lower_red = np.array([0, 50, 50])  
upper_red = np.array([10, 255, 255])  
mask = cv2.inRange(hsv, lower_red, upper_red)  # 应用膨胀操作来放大边框内的内容和边框  
kernel = np.ones((5,5),np.uint8)  
dilated = cv2.dilate(mask,kernel,iterations = 1)  # 获取边界框坐标  
contours, hierarchy = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)  # 遍历每个轮廓并找到最大的红色边框  
max_contour = None  
max_area = 0  
for contour in contours:  area = cv2.contourArea(contour)  # if area > max_area:  #     max_contour = contour  #     max_area = area  x, y, w, h = cv2.boundingRect(contour)  # 裁剪图像以显示边界框内的内容及其周围10px内容  crop_image = image[max(y-10, 0):min(y+h+10, image.shape[0]), max(x-10, 0):min(x+w+10, image.shape[1])]  # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  cv2.rectangle(crop_image, (max(x-10, 0), max(y-10, 0)), (min(x+w+10, image.shape[1]), min(y+h+10, image.shape[0])), (0, 0, 255), 2)  # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  #cv2.imshow('Content with Border and Surrounding Area', crop_image)  # 显示带有红色边框和周围10px内容的裁剪后的图像  cv2.imwrite(f'red_border_{x}_{y}_{w}_{h}.jpg', crop_image)  cv2.waitKey(0)  cv2.destroyAllWindows()# 获取最大轮廓的边界框坐标  
# x, y, w, h = cv2.boundingRect(max_contour)  # # 裁剪图像以显示边界框内的内容及其周围10px内容  
# crop_image = image[max(y-10, 0):min(y+h+10, image.shape[0]), max(x-10, 0):min(x+w+10, image.shape[1])]  # # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
# cv2.rectangle(crop_image, (max(x-10, 0), max(y-10, 0)), (min(x+w+10, image.shape[1]), min(y+h+10, image.shape[0])), (0, 0, 255), 2)  # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
# cv2.imshow('Content with Border and Surrounding Area', crop_image)  # 显示带有红色边框和周围10px内容的裁剪后的图像  # cv2.waitKey(0)  
# cv2.destroyAllWindows()

识别红框

import cv2
import numpy as np# 加载图像
image = cv2.imread('red_border_1038_1886_6_6.jpg')# 将图像转换为灰度
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 二值化图像
_, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 找到图像中的轮廓
contours, _ = cv2.findContours(threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 遍历每个轮廓,判断是否是闭合的圆
for contour in contours:# 进行轮廓近似,获取近似的多边形轮廓epsilon = 0.01 * cv2.arcLength(contour, True)approx = cv2.approxPolyDP(contour, epsilon, True)# 计算近似轮廓的周长approx_length = cv2.arcLength(approx, True)# 计算原始轮廓的周长contour_length = cv2.arcLength(contour, True)# 判断近似轮廓的周长是否接近于原始轮廓的周长if approx_length >= 0.9 * contour_length:# 绘制闭合的圆cv2.drawContours(image, [approx], -1, (0, 255, 0), 2)cv2.putText(image, 'Closed Circle', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)print("存在")# 显示结果图像
cv2.imshow('Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/127383.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

保姆级-微信小程序开发教程

一,注册微信小程序 如果你还没有微信公众平台的账号,请先进入微信公众平台首页,点击 “立即注册” 按钮进行注册。注册的账号类型可以是订阅号、服务号、小程序以及企业微信,我们选择 “小程序” 即可。 接着填写账号信息&#x…

文件操作(个人学习笔记黑马学习)

C中对文件操作需要包含头文件<fstream > 文件类型分为两种: 1.文本文件&#xff1a;文件以文本的ASCII码形式存储在计算机中 2.二进制文件&#xff1a;文件以文本的二进制形式存储在计算机中&#xff0c;用户一般不能直接读懂它们 操作文件的三大类: 1.ofstream: 写操作 …

生成多样、真实的评论(2019 IEEE International Conference on Big Data )

论文题目&#xff08;Title&#xff09;&#xff1a;Learning to Generate Diverse and Authentic Reviews via an Encoder-Decoder Model with Transformer and GRU 研究问题&#xff08;Question&#xff09;&#xff1a;评论生成&#xff0c;由上下文评论->生成评论 研…

Java类和对象(七千字详解!!!带你彻底理解类和对象)

目录 一、面向对象的初步认知 1、什么是面向对象 2、面向对象和面向过程 &#xff08;1&#xff09;传统洗衣服的过程 &#xff08;2&#xff09;现代洗衣服过程 ​编辑 二、类的定义和使用 1、类的定义格式 三、类的实例化 1、什么是实例化 2、类和对象说明 四、t…

计算机网络初识

目录 1、计算机网络背景 网络发展 认识 "协议" 2、网络协议初识 OSI七层模型 TCP/IP五层(或四层)模型 3、网络传输基本流程 网络传输流程图 数据包封装和分用 4、网络中的地址管理 认识IP地址 认识MAC地址 1、计算机网络背景 网络发展 在之前呢&…

redis如何保证接口的幂等性

背景 如何防止接口中同样的数据提交&#xff0c;以及如何保证消息不被重复消费&#xff0c;这些都是shigen在学习的过程中遇到的问题。今天&#xff0c;趁着在学习redis的间隙&#xff0c;我写了一篇文章进行简单的实现。 注意&#xff1a;仅使用于单机的场景&#xff0c;对于…

Android Studio实现一笔画完小游戏

文章目录 一、项目概述二、开发环境三、详细设计3.1、数据库设计3.2、普通模式3.3、随机模式3.4、关卡列表 四、运行演示五、项目总结六、源码获取 一、项目概述 Android一笔画完是一种益智游戏&#xff0c;玩家需要从起点开始通过一条连续的线&#xff0c;将图形中所有的方块…

一种基于注意机制的快速、鲁棒的混合气体识别和浓度检测算法,配备了具有双损失函数的递归神经网络

A fast and robust mixture gases identification and concentration detection algorithm based on attention mechanism equipped recurrent neural network with double loss function 摘要 提出一个由注意力机制组成的电子鼻系统。首先采用端到端的编码器译码器&#xff…

树莓派入门

目录 前言系统烧录使用官方烧录工具选择操作系统选择存储卡配置 Win32DiskImager 有屏幕树莓派开机树莓派关机无屏幕树莓派开机获取树莓派IP地址通过路由器获取共享网络方式获取给树莓派配置静态IP地址查找默认网关分盘给树莓派的IP地址修改树莓派DHCP配置文件 ssh登录 让树莓派…

C# PSO 粒子群优化算法 遗传算法 随机算法 求解复杂方程的最大、最小值

复杂方程可以自己定义&#xff0c;以下是看别人的题目&#xff0c;然后自己来做 以下是计算结果 private void GetMinResult(out double resultX1, out double min){double x1, result;Random random1 new Random(DateTime.Now.Millisecond* DateTime.Now.Second);min 99999…

数字城市:科技革命下的未来之城

随着科技的不断进步&#xff0c;数字城市已经成为了未来城市发展的关键趋势。数字城市是指利用先进的信息技术、互联网和大数据等工具&#xff0c;将城市各个方面进行数字化、智能化、互联化的发展模式。它不仅仅是一种技术&#xff0c;更是一种对城市管理、发展和居民生活方式…

局域网ntp服务器设置(windows时间同步服务器NetTime)(ubuntu systemd-timesyncd ntp客户端)123端口、ntp校时

文章目录 背景windows如何配置ntp服务器手动配置配置参数AnnounceFlags和Enabled含义 使用软件配置&#xff08;NetTime&#xff09;实操相关疑问&#xff1a;0.nettime.pool.ntp.org是什么&#xff1f; 注意事项请务必检查windows主机123端口是否已被占用&#xff0c;方法请参…

B站:AB Test 知识全解

AB Test的实质&#xff1a;假设检验&#xff0c;主要有以下几个步骤&#xff1a; 1、在实验开始前&#xff0c;找产品、项目经理等确认&#xff1a;实验需要验证的改动点&#xff08;一次只能看一个&#xff01;&#xff01;&#xff01;&#xff09; 2、数据分析师设计需要去观…

C++ 多态

引例&#xff1a; #include<iostream> using namespace std; class Animal { public:void speak(){cout<<"动物在说话"<<endl;} }; class Cat:public Animal { public:void speak(){cout<<"小猫在说话"<<endl;} }; void Do…

Java事件机制简介 内含面试题

面试题分享 云数据解决事务回滚问题 点我直达 2023最新面试合集链接 2023大厂面试题PDF 面试题PDF版本 java、python面试题 项目实战:AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮…

用go实现一个循环队列

目录 队列数组队列的“假溢出”现象循环队列三种判断队列空和满的方法无下标&#xff08;链式&#xff09;有下标&#xff08;顺序&#xff09;长度标记 go用顺序表实现一个循环队列队列的链式存储结构 队列 队列&#xff08;queue&#xff09;是只允许在一端进行插入操作&…

TSN时间敏感网络

目录 时间敏感网络介绍 子协议介绍 时间同步 IEEE802.1AS 调度和流量整形 IEEE802.1Q IEEE802.1Qbv IEEE802.1cr IEEE802.1Qbu IEEE802.1Qch IEEE802.1Qav IEEE802.1Qcc 纠错机制与安全 IEEE802.1Qci IEEE802.1CB IEEE802.1Qca 参考 时间敏感网络介绍 TSN(Tim…

【技术分享】RK Android11系统SD卡启动方法

本文基于Purple Pi OH 3566主板&#xff0c;介绍Android11源码的修改&#xff0c;获得可从SD卡启动的Android11系统镜像。 Purple Pi OH作为一款兼容树莓派的开源主板&#xff0c;采用瑞芯微RK3566 (Cortex-A55) 四核64位超强CPU,主频最高达1.8 GHz,算力高达1Tops&#xff0c;…

C#,数值计算——多项式微分(Binomial Deviates)的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 二项式偏差 /// Binomial Deviates /// </summary> public class Binomialdev : Ran { private double pp { get; set; } private double p…

docker 安装 Node-RED

Node-RED 是构建物联网应用程序的一个强大工具&#xff0c;使用可视化编程方法&#xff0c;连接起来执行任务。而homeassistant是家居智慧中枢&#xff0c;本文介绍如何安装Node-RED及HASS的插件 1、拉取镜像 docker pull nodered/node-red # 2、部署镜像 创建目录 mkidr -…