【C++】动态内存管理

【C++】动态内存管理

  • new和delete
    • 用法
      • 内置类型
      • 自定义类型
      • 抛异常
      • 定位new
    • 刨析new和delete的执行与实现逻辑
      • 功能执行顺序
        • new
        • delete
      • 功能实现
        • operator new与operator delete
  • malloc free与new delete的总结

在我们学习C++之前
在C语言中常用的动态内存管理的函数为: malloc calloc realloc free

在我们学习了C++后,也迎来了新的动态内存管理的操作符
new

new和delete

用法

内置类型

//对应类型指针接收          申请的类型      
int* p1          =   new   int//将创建的int变量赋值为3
int* p2=new int(3);//申请多个int对象,并将其赋值为1和2
int* p3 = new int[2] {1, 2};//将new申请的空间进行释放
delete p1;
delete p2;//与new[]配合使用
delete[] p3;

从这上面我们可以看到new其实也没有什么特别出彩的地方,初始化和申请多个对象,老哥俩也都能做到

但是我们要看的是C++对于C的区别可不是内置类型,而是自定义类型。

自定义类型

这里是malloc的自定义类型的开辟内存方法

class A 
{
public:A(int x = 3):_x(x){}~A() {}
private:int _x;};
int main()
{A* A1 = (A*)malloc(sizeof(A));free(A1);
}

接下来是new的申请内存的使用。

class A 
{
public:A(int x = 3):_x(x){cout << "构造";}~A()	{cout <<"\n" << "析构";}
private:int _x;};int main()
{A* A1 = new A(3);delete A1;
}

在这里插入图片描述
这里看到结果,相信大家就看到new的一部分优势了。

new会自动调用构造函数,delete会自动调用析构函数,而free和malloc做不到

这就使new可以对开辟的对象进行初始化,而malloc做不到

抛异常

在使用malloc中时,当遇到申请空间失败时,会进行返回空地址的。
就是通过返回值来表示错误

int main()
{while (malloc(sizeof(1024 * 1024))){}
}

这个代码就是不挺向堆区申请空间,直到malloc返回指针为空时结束

而在C++中,更偏向抛异常的表示方法。

int main()
{int* p1=nullptr;do{p1=new int[1024 * 1024];} while (p1);
}

这里不停申请会出现错误

new在使用的时候会对申请空间的错误进行抛出异常。

这个时候想要看到什么地方出错,就需要对异常进行捕获。

int main()
{int* p1=nullptr;try {do{p1=new int[1024 * 1024];} while (p1);}catch (const exception& e){cout << e.what() << endl;}
}

在这里插入图片描述
这里就成功将错误展示了出来。

定位new

经过上面,我们知道new具有初始化对象的功能,这是malloc不曾具有的。

所以这个时候就引出了new的一个特殊用法。

不需要new来申请和销毁空间,只是对对象进行初始化

用法:

new (place_address) type

class A
{
public:A(int member=13){_member = member;}~A(){cout << "\n" << "析构";}
private:int _member;};int main()
{
//这里的A1只是一个地址,没有进行初始化。A* A1 = (A*)malloc(sizeof(A));
//这里通过new来调用构造函数		地址			类型		构造函数的参数new 					(A1) 		A		(1);}

这个一般来讲都是用在池化技术里的。

博主也没学到哪,所以只能稍微简单讲下
在这里插入图片描述

为了提高效率,所以会选择一次申请一块空间
在这里插入图片描述

刨析new和delete的执行与实现逻辑

这里我们从上面能看到new和delete具有以下功能

1.开辟/销毁 空间
2.抛出异常
3.调用 构造/析构 函数

功能执行顺序

这里就随便写个代码来解释它的执行

class A 
{
public:A(){_member = new int;}~A()	{cout <<"\n" << "析构";delete _member;}
private:int* _member;};int main()
{A* A1 = new A;
}

new

在这里插入图片描述

通过这上面的顺序,我们能知道new一个对象所走的步骤

我们初心是为了理清楚
1.开辟空间
2.抛出异常
3.调用 构造 函数

这三步的步骤顺序。

这里为了让大家看得清楚一点,就稍微标记一下

在这里插入图片描述

这里我们就能看到,对于new来说

需要进行的操作步骤是:
1.用malloc来向堆区申请空间
2.对malloc进行判断,是否出错。
3.调用构造函数

delete

而delete就很简单了
在这里插入图片描述
这是new所走的步骤。
这里我们能看到每个变量都层层指向
所以我们原路返回,一个一个回头销毁就行
在这里插入图片描述
这里我们也进行标记一下
在这里插入图片描述
所以delete的执行顺序为
1.调用构造函数
2.用free来向堆区申请空间
3.对free进行判断,是否出错。

功能实现

这里我们知道了new和delete的底层执行顺序

这里就要来了解一下他们的实现的方式了。

1.开辟/销毁 空间
2.抛出异常
3.调用 构造/析构 函数

我们的目标是要实现这三个功能。

销毁/开辟空间,在C语言中不就有现成的吗
free和malloc函数。

所以实现第一步直接调用malloc和free即可

第二步抛出异常就是按照情况进行判断,然后进行异常的捕获

第三步调用构造析构函数不难,直接调用就可以

operator new与operator delete

这里的operator new和operator delete

是设计的全局函数,专门为new和delete的实现的函数

主要的作用是实现前两步:

1.开辟/销毁 空间
2.抛出异常

这里就能写出new和delete的实现逻辑了
在这里插入图片描述
在这里插入图片描述

malloc free与new delete的总结

综上所述

new和delete在实现的过程中调用了free和malloc的函数。

所以可以说
new和delete可以说是为了让内存开辟更适合面向对象语言的使用而诞生的

所以与其说new和malloc的区别,不如说new对于malloc的提升有哪些

提升
1.
malloc的返回值为(void), 在使用时必须强转。new不需要,因为new后跟的是空间的类
2.
malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常
3.
申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数
而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理
4.malloc不会对申请的空间进行初始化,new可以对申请内存进行初始化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/128407.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE5、CesiumForUnreal实现瓦片坐标信息图层效果

文章目录 1.实现目标2.实现过程2.1 原理简介2.2 cesium-native改造2.3 CesiumForUnreal改造2.4 运行测试3.参考资料1.实现目标 参考CesiumJs的TileCoordinatesImageryProvider,在CesiumForUnreal中也实现瓦片坐标信息图层的效果,便于后面在调试地形和影像瓦片的加载调度等过…

用于独立系统应用的光伏MPPT铅酸电池充电控制器建模(Simulink实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

组件以及组件间的通讯

组件 & 组件通讯 :::warning 注意 阅读本文章之前&#xff0c;你应该先要了解 ESM 模块化的 import export&#xff0c;如需要请查看 ESM 模块化。 ::: 上一篇有介绍到什么是组件化&#xff0c;就是把一个页面拆分成若干个小模块&#xff0c;然后重新组成一个页面。其中的…

4.3.3 【MySQL】Redundant行格式

现在我们把表demo 的行格式修改为 Redundant &#xff1a; 为了方便大家理解和节省篇幅&#xff0c;我们直接把表 demo 在Redundant 行格式下的两条记录的真实存储数据提供出来&#xff0c;之后我们着重分析两种行格式的不同即可。 下边我们从各个方面看一下 Redundant 行格式有…

fastjson漏洞复现

文章目录 启动环境漏洞复现下载bp插件漏洞扫描dnslog测试是否向外请求资源用工具构造rmi服务器 反弹shell 启动环境 到vulhub目录下 cd vulhub/fastjson/1.2.24-rce安装环境并启动&#xff1a; sudo docker-compose up -d && sudo docker-compose up -d启动成功&…

ARM/X86工业级数据采集 (DAQ) 与控制产品解决方案

I/O设备&#xff0c;包括信号调理模块、嵌入式PCI/PCIE卡、便携式USB模块、DAQ嵌入式计算机、模块化DAQ系统&#xff0c;以及DAQNavi/SDK软件开发包和DAQNavi/MCM设备状态监测软件。 工业I/O产品适用于各种工业自动化应用&#xff0c;从机器自动化控制、测试测量到设备状态监测…

面向OLAP的列式存储DBMS-16-[ClickHouse]python操作ClickHouse

clickhouse查询表容量方法 1 clickhouse常用命令 #clickhouse-client进入客户端 pda1:)show databases; pda1:)create database test; pda1:)use system; pda1:)show tables; pda1:) exit; 其余的就是常规的一些sql语句。 2 python操作clickhouse 2.1 clickhouse-driver(9…

flume1.11.0安装部署

1、准备安装包apache-flume-1.11.0-bin.tar.gz&#xff1b; 上传&#xff1b; 2、安装flume-1.11.0&#xff1b; 解压&#xff1b; tar -zxvf apache-flume-1.11.0-bin.tar.gz -C /opt/server 进入conf目录&#xff0c;修改flume-env.sh&#xff0c;配置JAVA_HOME&#xff1b…

nbcio-boot移植到若依ruoyi-nbcio平台里一formdesigner部分(一)

nbcio-boot项目移植到ruoyi-nbcio项目中&#xff0c; 今天主要讲formdesigner的移植 1、把formdesigner的源代码拷贝到component里&#xff0c;并修改成formdesigner&#xff0c;如下&#xff1a; 2、form下的index.vue修改如下&#xff1a; 主要是修改新增&#xff0c;修改…

个人博客系统-测试用例+自动化测试

一、个人博客系统测试用例 二、自动化测试 使用selenium4 Junit5单元测试框架&#xff0c;来进行简单的自动化测试。 1. 准备工作 &#xff08;1&#xff09;引入依赖&#xff0c;此时的pom.xml文件&#xff1a; <?xml version"1.0" encoding"UTF-8&quo…

华为数通方向HCIP-DataCom H12-821题库(单选题:301-320)

第301题 某台路由器运行 IS-IS,其输出信息如图所示,下列说法错误的是? [R1]display isis sdb local verboseDatabase information for ISIS(1) Level-1 Link State Database LSPID Seq Num Checksum Holdtime…

Linux —— 信号阻塞

目录 一&#xff0c;信号内核表示 sigset_t sigprocmask sigpending 二&#xff0c;捕捉信号 sigaction 三&#xff0c;可重入函数 四&#xff0c;volatile 五&#xff0c;SIGCHLD 信号常见概念 实际执行信号的处理动作&#xff0c;称为信号递达Delivery&#xff1b;信…

深眸科技自研轻辙视觉引擎,以AI机器视觉赋能杆号牌识别与分拣

电线杆号牌作为电力行业标识的一种&#xff0c;相当于电线杆的“身份证”&#xff0c;担负着宣传电力知识、安全警示的作用&#xff0c;用于户外使用标记输电线路电压等级、线路名称、杆塔编号等&#xff0c;能够清晰地记录电力线路杆的信息&#xff0c;并为电力线路的更改以及…

面试问题总结(1)

(꒪ꇴ꒪ )&#xff0c;Hello我是祐言QAQ我的博客主页&#xff1a;C/C语言&#xff0c;数据结构&#xff0c;Linux基础&#xff0c;ARM开发板&#xff0c;网络编程等领域UP&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff0c;让我们成为一个强大的攻城狮&#xff0…

Matlab 如何计算正弦信号的幅值和初始相角

Matlab 如何计算正弦信号的幅值和初始相角 1、概述 如果已知一个正弦信号的幅值&#xff0c;在FFT后频域上该信号谱线的幅值与设置值不同&#xff0c;而是大了许多&#xff1b;如果不知道某一正弦信号的幅値&#xff0c;又如何通FFT后在頻域上求出该正弦信号的幅值呢? 2、…

Python 交易指南:利用 RSI

一、说明 RSI是相对强弱指数&#xff08;Relative Strength Index&#xff09;的缩写&#xff0c;是一种技术指标。该指标是用来测量股票或其他交易品种的价格波动强度和速度的&#xff0c;属于动量型指标。RSI常用于技术分析和交易策略中&#xff0c;可以帮助交易者判断市场的…

C语言:三子棋小游戏

简介&#xff1a; 目标很简单&#xff1a;实现一个 三子棋小游戏。三子棋大家都玩过&#xff0c;规则就不提及了。本博文中实现的三子棋在对局中&#xff0c;电脑落子是随机的&#xff0c;不具有智能性&#xff0c;玩家的落子位置使用键盘输入坐标。下面开始详细介绍如何实现一…

QT实战之翻金币游戏【未完待续】

文章目录 目录 文章目录 前言 二、创建项目 三、添加资源 四、主界面实现 1、设置游戏主场景配置 2、设置背景图片 3、创建开始按钮 总结 前言 对QT的相关知识与控件进行简单的学习之后&#xff0c;通过实现“翻金币游戏”来巩固与实践所学的QT知识。在制作过程中是根据以下视…

PHP8数组的类型-PHP8知识详解

php 8 引入了对数组的类型提示&#xff0c;以帮助开发者更准确地定义和验证数组的结构。以下是 PHP 8 中支持的数组类型&#xff1a;索引数组、关联数组、混合类型数组。 1、索引数组 (Indexed arrays): PHP索引数组一般表示数组元素在数组中的位置&#xff0c;它由数字组成&a…

飞行动力学 - 第18节-part2-航向操纵面 之 基础点摘要

飞行动力学 - 第18节-part2-航向操纵面 之 基础点摘要 1. 航向操纵面2. 非常规航向操纵面3. 正方向舵偏角产生的偏航力矩4. 产生或平衡侧滑角 β \beta β所需的方向舵偏角5. 参考资料 1. 航向操纵面 方向舵是航向的主要操纵面。 2. 非常规航向操纵面 开裂式阻力方向舵 ( Spl…