使用线性回归模型逼近目标模型 | PyTorch 深度学习实战

前一篇文章,计算图 Compute Graph 和自动求导 Autograd | PyTorch 深度学习实战

本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started

使用线性回归模型逼近目标模型

  • 什么是回归
  • 什么是线性回归
  • 使用 PyTorch 实现线性回归模型
    • 代码
    • 执行结果

什么是回归

在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

简单说,就是使用统计学手段,分析变量之间的规律。发现规律后,可以根据给定的数据猜测特征空间的因变量1的数据。

在这里插入图片描述
参考文章:https://zhuanlan.zhihu.com/p/669597409

什么是线性回归

用一条直线去逼近数据的分布,参考定义:

A linear regression is a straight line that describes how the values of a response variable y y y change as the predictor variable x x x changes.

线性回归在实际中,可以包含多元的情况,比如:

z = w 1 x + w 2 y z = w_1 x + w_2 y z=w1x+w2y

更多线性回归介绍,参考文章。

使用 PyTorch 实现线性回归模型

实现量化投资:现在假如我们观测到了某支股票的数据 v v v,并且这支股票和石油的价格 x x x、黄金的价格 y y y和原煤的价格 z z z 有关联。因此,我们取得了不同时刻的 x x x y y y z z z 和对应的股票价格 v v v,现在,依据这些数据,建立一个方程式:

v = a x + b y + c z + d v = ax + by + cz + d v=ax+by+cz+d

此时,依赖历史采集的数据,我们来求 a,b,c,d 的值。
使用 PyTorch,这个程序实现如下。

代码

import torch
import matplotlib.pyplot as plt
import numpy as np# X and Y data,观测数据,包含多条
# 每条包含 3 个数据,分别代表石油、黄金、原煤的价格
x_data = [[65., 80., 75.],[89., 88., 93.],[80., 91., 90.],[30., 98., 100.],[50., 66., 70.]]
# 对应的这支股票的价格
y_data = [[152.],[185.],[189.],[196.],[142.]]# 定义输入 tensor 和输出 tensor 的变量
x=torch.autograd.Variable(torch.Tensor(x_data)) 
y=torch.autograd.Variable(torch.Tensor(y_data))# Our hypothesis XW+b,定义模型及参数
model=torch.nn.Linear(3,1,bias=True)# cost criterion,定义损失函数
criterion=torch.nn.MSELoss()# Minimize,优化器
optimizer=torch.optim.SGD(model.parameters(),lr=1e-7)# 训练轮数
epochs=200
cost_h=np.zeros(epochs)# Train the model,对于这个简单的问题,没有使用 SGD,每次都是将数据录入
for step in range(epochs):optimizer.zero_grad()hypothesis=model(x) # Our hypothesiscost=criterion(hypothesis,y)cost.backward()optimizer.step()cost_h[step]=cost.data.numpy()print(step,'Loss:',cost.data.numpy(),'\nPredict:\n',hypothesis.data.numpy())for name, param in model.named_parameters():if param.requires_grad:print(name, param.data)plt.plot(cost_h)
plt.show()

执行结果

使用 Python 运行上述程序,结果如下:

weight tensor([[-0.0980,  0.5064,  0.4115]])
bias tensor([-0.1257])

在这里插入图片描述

因为模型的定义是:

model=torch.nn.Linear(3,1,bias=True)

也就是包含了三个参数和一个偏置,最终机器学习得到的公式就是:
v = − 0.0980 x + 0.5064 y + 0.4115 z − 0.1257 v = -0.0980x + 0.5064y + 0.4115z -0.1257 v=0.0980x+0.5064y+0.4115z0.1257

我们就可以由某一天的黄金、石油、原煤的价格,来预测这支股票的价格。


  1. 因变量(dependent variable)函数中的专业名词,也叫函数值。函数关系式中,某些特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量。如:Y=f(X)。此式表示为:Y随X的变化而变化。Y是因变量,X是自变量。 ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/13134.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【蓝桥杯嵌入式】2_LED

1、电路图 74HC573是八位锁存器,当控制端LE脚为高电平时,芯片“导通”,LE为低电平时芯片“截止”即将输出状态“锁存”,led此时不会改变状态,所以可通过led对应的八个引脚的电平来控制led的状态,原理图分析…

尝试在Office里调用免费大语言模型的阶段性进展

我个人觉得通过api而不是直接浏览器客户端聊天调用大语言模型是使用人工智能大模型的一个相对进阶的阶段。 于是就尝试了一下。我用的是老师木 袁进辉博士新创的硅基流动云上的免费的大模型。——虽然自己获赠了不少免费token,但测试阶段用不上。 具体步骤如下&am…

LabVIEW自定义测量参数怎么设置?

以下通过一个温度采集案例,说明在 LabVIEW 中设置自定义测量参数的具体方法: 案例背景 ​ 假设使用 NI USB-6009 数据采集卡 和 热电偶传感器 监测温度,需自定义以下参数: 采样率:1 kHz 输入量程:0~10 V&a…

理解 C 与 C++ 中的 const 常量与数组大小的关系

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C语言 文章目录 💯前言💯数组大小的常量要求💯C 语言中的数组大小要求💯C 中的数组大小要求💯为什么 C 中 const 变量可以作为数组大小💯进一步的…

【Elasticsearch】文本分类聚合Categorize Text Aggregation

响应参数讲解: key (字符串)由 categorization_analyzer 提取的标记组成,这些标记是类别中所有输入字段值的共同部分。 doc_count (整数)与类别匹配的文档数量。 max_matching_length (整数)从…

基于SpringBoot的信息技术知识赛系统的设计与实现(源码+SQL脚本+LW+部署讲解等)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…

Windows Docker笔记-安装docker

安装环境 操作系统:Windows 11 家庭中文版 docker版本:Docker Desktop version: 4.36.0 (175267) 注意: Docker Desktop 支持以下Windows操作系统: 支持的版本:Windows 10(家庭版、专业版、企业版、教育…

《Kettle保姆级教学-界面介绍》

目录 一、Kettle介绍二、界面介绍1.界面构成2、菜单栏详细介绍2.1 【文件F】2.2 【编辑】2.3 【视图】2.4 【执行】2.5 【工具】2.6 【帮助】 3、转换界面介绍4、作业界面介绍5、执行结果 一、Kettle介绍 Kettle 是一个开源的 ETL(Extract, Transform, Load&#x…

新型智慧城市建设方案-1

智慧城市建设的背景与需求 随着信息技术的飞速发展,新型智慧城市建设成为推动城市现代化、提升城市管理效率的重要途径。智慧城市通过整合信息资源,优化城市规划、建设和管理,旨在打造更高效、便捷、宜居的城市环境。 智慧城市建设的主要内容…

【Java计算机毕业设计】基于Springboot的物业信息管理系统【源代码+数据库+LW文档+开题报告+答辩稿+部署教程+代码讲解】

源代码数据库LW文档(1万字以上)开题报告答辩稿 部署教程代码讲解代码时间修改教程 一、开发工具、运行环境、开发技术 开发工具 1、操作系统:Window操作系统 2、开发工具:IntelliJ IDEA或者Eclipse 3、数据库存储&#xff1a…

ollama部署deepseek实操记录

1. 安装 ollama 1.1 下载并安装 官网 https://ollama.com/ Linux安装命令 https://ollama.com/download/linux curl -fsSL https://ollama.com/install.sh | sh安装成功截图 3. 开放外网访问 1、首先停止ollama服务:systemctl stop ollama 2、修改ollama的servic…

Agentic Automation:基于Agent的企业认知架构重构与数字化转型跃迁---我的AI经典战例

文章目录 Agent代理Agent组成 我在企业实战AI Agent企业痛点我构建的AI Agent App 项目开源 & 安装包下载 大家好,我是工程师令狐,今天想给大家讲解一下AI智能体,以及企业与AI智能体的结合,文章中我会列举自己在企业中Agent实…

图论常见算法

图论常见算法 算法prim算法Dijkstra算法 用途最小生成树(MST):最短路径:拓扑排序:关键路径: 算法用途适用条件时间复杂度Kruskal最小生成树无向图(稀疏图)O(E log E)Prim最小生成树无…

手机上运行AI大模型(Deepseek等)

最近deepseek的大火,让大家掀起新一波的本地部署运行大模型的热潮,特别是deepseek有蒸馏的小参数量版本,电脑上就相当方便了,直接ollamaopen-webui这种类似的组合就可以轻松地实现,只要硬件,如显存&#xf…

Java进阶学习之路

Java进阶之路 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 Java进阶之路前言一、Java入门 Java基础 1、Java概述 1.1 什…

SpringBoot使用 easy-captcha 实现验证码登录功能

文章目录 一、 环境准备1. 解决思路2. 接口文档3. redis下载 二、后端实现1. 引入依赖2. 添加配置3. 后端代码实现4. 前端代码实现 在前后端分离的项目中,登录功能是必不可少的。为了提高安全性,通常会加入验证码验证。 easy-captcha 是一个简单易用的验…

Android 常用命令和工具解析之Battery Historian

Batterystats是包含在 Android 框架中的一种工具,用于收集设备上的电池数据。您可以使用adb bugreport命令抓取日志,将收集的电池数据转储到开发机器,并生成可使用 Battery Historian 分析的报告。Battery Historian 会将报告从 Batterystats…

如何安装PHP依赖库 更新2025.2.3

要在PHP项目中安装依赖,首先需要确保你的系统已经安装了Composer。Composer是PHP的依赖管理工具,它允许你声明项目所需的库,并管理它们。以下是如何安装Composer和在PHP项目中安装依赖的步骤: 一. 安装Composer 对于Windows用户…

DeepSeek各版本说明与优缺点分析

DeepSeek各版本说明与优缺点分析 DeepSeek是最近人工智能领域备受瞩目的一个语言模型系列,其在不同版本的发布过程中,逐步加强了对多种任务的处理能力。本文将详细介绍DeepSeek的各版本,从版本的发布时间、特点、优势以及不足之处&#xff0…

【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈机器学习与数据挖掘实战 ⌋ ⌋ ⌋ 机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联…