2023年数维杯数学建模A题河流-地下水系统水体污染研究求解全过程文档及程序

2023年数维杯数学建模

A题 河流-地下水系统水体污染研究

原题再现:

  河流对地下水有着直接地影响,当河流补给地下水时,河流一旦被污染,容易导致地下水以及紧依河流分布的傍河水源地将受到不同程度的污染,这将严重影响工农业的正常运作、社会经济的发展和饮水安全。在地下水污染中最难治理和危害最大的是有机污染,因而对有机污染物在河流-地下水系统中的行为特征进行研究具有十分重要的理论意义和实际价值。另外,已有研究表明在河流地下水系统中有机污染物的行为特征主要涉及对流迁移、水动力弥散、吸附及阻滞等物理过程、化学反应过程以及生物转化过程等。现设地下水渗流场为各向同性均质的稳态流,对有机污染物的迁移和转化规律进行研究和探索,并完成以下问题。
  问题1 通过查阅相关文献和资料,分析并建立河流-地下水系统中有机污染物的对流、弥散及吸附作用的数学模型 。
  问题2 试利用下面介绍的内容和表中试验参数以及数据依据数学模型研究某有机污染物在河流-地下水系统中的迁移转化机理。
  1) 对流、弥散试验参数
  通过试验测得河流-地下水系统中某有机污染物的对流、弥散有关参数见表1。
在这里插入图片描述
  2)吸附动力学试验结果
  四种不同河流沉积物对初始浓度为0.5mg/L左右的某有机污染物吸附体系的吸附动力学过程及不同吸附时间测得固、液相某有机物的浓度列于表2中.

在这里插入图片描述
  3)等温平衡吸附试验结果
  地下水中有机污染物的吸附行为采用等温平衡吸附的数学模型描述,四种不同沉积物对10种不同初始浓度的某有机污染物24小时的等温平衡吸附试验结果列于表3中.
在这里插入图片描述
  问题3 生物降解是污染物一个很重要的转化过程,考虑生物降解作用对有机污染物转化的影响,建立适当的数学模型,试结合表4中的试验数据分析微生物对该有机污染物的降解特性。
在这里插入图片描述

整体求解过程概述(摘要)

  党的二十大报告指出,“深入推进环境污染防治,统筹水资源、水环境、水生态治理,推动重要江河湖库生态保护治理,基本消除城市黑臭水体”。其中河流和地下水系统在人类生活中发挥关键作用。当污染发生时,河流对地下水的补给可能导致周边水源受污,影响工农业运作、社会发展及饮水安全。在地下水污染中,有机污染物的问题最为棘手。为了解这类污染物在河流-地下水系统中的行为,我们需要深入研究其物理、化学反应和生物转化过程。本研究将以各向同性均质的稳态流作为地下水渗流场,探究有机污染物的迁移与转化规律。
  对于问题一,我们查阅相关文献资料分别得出对流方程、弥散方程以及吸附作用方程。我们将基于质量守恒方程与一些假设条件,建立描述有机污染物浓度变化的一维及多维对流-弥散-吸附微分方程,接着通过有限差分法求解该一维微分方程,以便直观地观察模型参数对有机污染物迁移转化过程的影响。
  对于问题二,我们将基于给定的四种有机物液、固相实验数据,对模型进行参数调整和检验。首先,基于对流、弥散试验参数,更新微分方程的模型参数,以更准确地描述有机污染物的迁移转化过程;然后,根据四种不同河流沉积物的吸附动力学数据,重新计算吸附系数k值,由于给定的时间数据比较离散,本文使用插值方法进行数值模拟,将更新后的k值用于微分方程求解;最后,基于四种有机物液、固相状态下的初始浓度与平衡浓度数据,通过匹配对可以迭代计算出初始浓度与等温吸附24小时后平衡的浓度的吸附系数k值。然后求均值作为吸附系数k,更新微分方程模型参数。
  对于问题三,我们将在微分方程模型中引入生物降解过程,以研究微生物对有机污染物的降解特性,假设生物降解速率与微生物浓度M和有机物浓度C之间存在线性关系,则可在原有的对流弥散-吸附模型中添加生物降解项,形成新的数学模型一对流-弥散-吸附-生物降解的微分方程。

问题分析:

  问题1要求我们从已有的相关理论研究和实证分析中找到适用于本题的数学模型,用以描述河流-地下水系统中有机污染物的对流、弥散及吸附作用。由于团队相关专业知识的了解程度较低,我们决定将问题简化,建立描述河流-地下水系统中有机污染物变化的一维对流—弥散—吸附微分方程,并通过有限差分法求解该方程,以便能够直观地呈现出模型参数对有机物污染物迁移转化过程的影响,同时有利于求解问题2。
  对于第二个问题,我们将基于给定的实验数据,对模型进行参数调整和验证。首先,我们将优化微分方程的模型参数,以更准确地描述有机污染物的迁移转化过程。然后,我们将根据四种不同河流沉淀物的吸附动力学数据, 重新计算吸附系数k 值。由于给定的时间数据比较离散,我们将考虑结合插值方法进行数值模拟,最后,我们将对每种有机物在不同状态下的浓度变化情况进行模拟,以验证我们的模型和参数调整的有效性。
  对于第三个问题,我们将在微分方程模型中引入生物降解过程,以研究微生物对有机污染物的降解特性。具体地,我们将在原有的对流-弥散-吸附模型中添加生物降解项,形成新的数学模型。然后,我们将根据河流等温平衡吸附24小时后的浓度变化数据,通过迭代计算方法求解吸附系数k值。最后,我们将求得的k值的均值作为新模型的吸附系数k,以此来更新我们的数学模型。

模型假设:

  1.一维空间假设:将河流-地下水系统近似为一维空间,忽略横向扩散和纵向非均匀性;
  2.连续性假设:假设有机污染物的浓度分布在空间上具有一定的连续性和平滑性,可以用微分方程来描述;
  3.线性生物降解假设:假设生物降解速率与微生物浓度和有机物浓度之间存在线性关系,用生物降解速率常数上表示;
  4.稳态吸附假设:假设吸附过程处于稳态,吸附系数k不随时间变化;
  5.地下水流速相对于孔隙流速u来说较小,因此可以忽略其对流的影响。

论文缩略图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"]
plt.rcParams["axes.unicode_minus"]=False
for dd in range(1,13,3):
# 模型参数
L = 100 # 系统长度(单位:m)
Nx = 24 # 空间离散化点数
T = 24 # 模拟时间(单位:天)
Nt = 1000 # 时间离散化步数
dx = L / (Nx - 1) # 空间步长
dt = T / Nt # 时间步长
v = 0.1 # 水流速度(单位:m/day)
D = 0.01 # 弥散系数(单位:m²/day)
k = 0.001 # 吸附系数(单位:1/day)
# 初始条件
C0 = np.zeros(Nx) # 初始浓度分布
C0[int(Nx / 2)] =dd # 在中心位置设置初始浓度为1.0
# 数值求解
C = np.zeros((Nt, Nx)) # 存储浓度分布的数组
C[0, :] = C0
for t in range(1, Nt)
for x in range(1, Nx - 1):
# 对流项
convective = -v * (C[t-1, x] - C[t-1, x-1]) / dx
# 弥散项
dispersive = D * (C[t-1, x+1] - 2 * C[t-1, x] + C[t-1, x-1]) / (dx**2)
# 吸附项
adsorption = -k * C[t-1, x]
# 数值更新
C[t, x] = C[t-1, x] + dt * (convective + dispersive + adsorption)
# 绘制浓度随时间和空间的分布图
x = np.linspace(0, L, Nx)
t = np.linspace(0, T, Nt)
X, T = np.meshgrid(x, t)
plt.contourf(X, T, C, cmap='cool')
plt.colorbar(label='浓度')
plt.xlabel('距离 (m)')
plt.ylabel('天数 (days)')
plt.title('浓度为%s_污染物浓度'%dd)
plt.savefig('./Q1/浓度为%s_污染物浓度.jpg'%dd)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"]
plt.rcParams["axes.unicode_minus"]=False
for dd in range(1,13,3):
# 模型参数
L = 100 # 系统长度(单位:m)
Nx = 24 # 空间离散化点数
T = 24 # 模拟时间(单位:天)
Nt = 1000 
dx = L / (Nx - 1) # 空间步长
dt = T / Nt # 时间步长
v = 0.1 # 水流速度(单位:m/day)
D = 0.01 # 弥散系数(单位:m²/day)
k = 0.001 # 吸附系数(单位:1/day)
# 初始条件
C0 = np.zeros(Nx) # 初始浓度分布
C0[int(Nx / 2)] =dd # 在中心位置设置初始浓度为1.0
# 数值求解
C = np.zeros((Nt, Nx)) # 存储浓度分布的数组
C[0, :] = C0
for t in range(1, Nt):
for x in range(1, Nx - 1):
# 对流项
convective = -v * (C[t-1, x] - C[t-1, x-1]) / dx
# 弥散项
dispersive = D * (C[t-1, x+1] - 2 * C[t-1, x] + C[t-1, x-1]) / (dx**2)
# 吸附项
adsorption = -k * C[t-1, x]
# 数值更新
C[t, x] = C[t-1, x] + dt * (convective + dispersive + adsorption)
# 绘制浓度随时间和空间的分布图
x = np.linspace(0, L, Nx)
t = np.linspace(0, T, Nt)
X, T = np.meshgrid(x, t)
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, T, C, cmap='viridis')
ax.set_xlabel('距离 (m)')
ax.set_ylabel('天数 (days)')
ax.set_zlabel('浓度')
ax.set_title('浓度为%s_污染物浓度' % dd)
plt.savefig('./Q2_1/_浓度为%s_污染物浓度.jpg' % dd)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
plt.rcParams['font.sans-serif'] = ['STSong']
plt.rcParams['axes.unicode_minus'] = False
# 创建数据集
data3 = pd.DataFrame({
'初始浓度': [0.0681, 0.1372, 0.2177, 0.3302, 0.4324, 0.5338, 0.5842, 0.6222, 0.7062, 0.7956],
'S1液相': [0.0461, 0.0722, 0.1235, 0.2150, 0.2951, 0.3716, 0.3969, 0.4547, 0.4852, 0.5714],
'S1固相': [0.1702, 0.6005, 0.8921, 1.102, 1.323, 1.572, 1.823, 2.100, 2.160, 2.192],
'S2液相': [0.0246, 0.0492, 0.0903, 0.1725, 0.2563, 0.3376, 0.3574, 0.3701, 0.4352, 0.5043],
'S2固相': [0.1852, 0.8301, 1.224, 1.527, 1.711, 1.912, 2.218, 2.471, 2.660, 2.863],
'S3液相': [0.0424, 0.0654, 0.1091, 0.2068, 0.2614, 0.3304, 0.3852, 0.4065, 0.4467, 0.5999],
'S3固相': [0.2071, 0.6683, 1.036, 1.184, 1.660, 1.984, 1.940, 2.107, 2.545, 2.937],
'S4液相': [0.0354, 0.0613, 0.0993, 0.1931, 0.2528, 0.2879, 0.3568, 0.4195, 0.5071, 0.5061],
'S4固相': [0.2772, 0.7101, 1.134, 1.321, 1.546, 1.781, 2.124, 1.977, 2.461, 2.845]
})
# 创建数据集
data4 = pd.DataFrame({
'浓度': [0.483, 0.479, 0.452, 0.418, 0.371, 0.342, 0.319, 0.311, 0.309],
'微生物浓度': [1.50E+07, 1.70E+07, 2.00E+07, 2.50E+07, 3.00E+07, 3.30E+07, 3.50E+07, 3.70E+07, 3.70E+07],
'有机物浓度比': [1, 0.991718427, 0.935817805, 0.865424431, 0.768115942, 0.708074534, 0.660455487, 0.64389234, 0.639751553],
'天数': [0, 1, 2, 3, 4, 5, 6, 7, 8]
})
from scipy.interpolate import interp1d
for ii in data3.columns[1:]:
# 模型参数
L = 100 # 系统长度(单位:m)
Nx = 24 # 空间离散化点数
T = 24 # 模拟时间(单位:天)
Nt = 1000 # 时间离散化步数
dx = L / (Nx - 1) # 空间步长
dt = T / Nt # 时间步长
# 河流-地下水参数
u = 38.67 * 0.01 # 平均孔隙流速(单位:m/day),将单位转换为cm/d
ν = 5.01 * 0.01 # 地下水渗流流速(单位:m/day),将单位转换为cm/d
D = 0.38 * (1 / 1440) * 0.01**2 # 弥散系数(单位:cm²/min 转换为 m²/d)
k = 6.32 * 0.01 # 渗透系数(单位:m/day),将单位转换为cm/d
μ = 0.01 # 生物降解速率常数
# 含水层样品的干密度和孔隙度
ρ = 1.67 # 干密度(单位:g/cm³)
n = 0.375 # 孔隙度
print(ii)
temp=data3[['初始浓度',ii]]
k_list=[]
for i in range(temp.shape[0]):
# 计算吸附系数
C_max =temp.iloc[i,0] # 最大吸附浓度
Ce = temp.iloc[i,1] # 平衡浓度
k = C_max / (Ce - C_max) * (ρ * n)
k_list.append(k)
k=np.mean(k_list)
# 初始条件
C0 = np.zeros(Nx) # 初始浓度分布
C0[int(Nx / 2)] =0.483# 在中心位置设置初始浓度为1.0
# 数值求解
C = np.zeros((Nt, Nx)) # 存储浓度分布的数组
C[0, :] = C0
# 创建插值函数
# 时间插值
interp_func = interp1d(data4['天数'], data4['浓度'], kind='quadratic')
time_interp = np.linspace(0, T, Nt)
for t in range(1, Nt):
for x in range(1, Nx - 1):
# 对流项
convective = -(u + ν) * (C[t-1, x] - C[t-1, x-1]) / dx
# 弥散项
dispersive = D * (C[t-1, x+1] - 2 * C[t-1, x] + C[t-1, x-1]) / (dx**2)
# 吸附项
adsorption = -k * (ρ * n * C[t-1, x])
# 生物降解项
bio_degradation = -μ * C[t-1, x] * interp_func(np.clip([t * dt], 0, data4["浓
度"].iloc[-1]))
# 数值更新
C[t, x] = C[t-1, x] + dt * (convective + dispersive + adsorption +
bio_degradation)
# # 数值更新
# C[t, x] = C[t-1, x] + dt * (convective + dispersive + adsorption)
# 绘制浓度随时间和空间的分布图
x = np.linspace(0, L, Nx)
t = np.linspace(T, 0, Nt)
if '固' in ii:
# 绘制浓度随时间和空间的分布图
x = np.linspace(0, L, Nx)
t = np.linspace(0, T, Nt)
else:
# 绘制浓度随时间和空间的分布图
x = np.linspace(0, L, Nx)
t = np.linspace(T, 0, Nt)
X, T = np.meshgrid(x, t)
plt.contourf(X, T, C, cmap='seismic')
plt.colorbar(label='浓度')
plt.xlabel('距离 (m)')
plt.ylabel('天数 (days)')
plt.title('%s 污染物浓度'%ii)
plt.savefig('./Q3/%s 污染物浓度.jpg'%ii)
plt.show()
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/131407.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SQL11 高级操作符练习(1)

描述 题目:现在运营想要找到男性且GPA在3.5以上(不包括3.5)的用户进行调研,请你取出相关数据。 示例:user_profile iddevice_idgenderageuniversitygpa12138male21北京大学3.423214male复旦大学4.036543female20北京大学3.242315female23浙…

C#__资源访问冲突和死锁问题

/// 线程的资源访问冲突:多个线程同时申请一个资源,造成读写错乱。 /// 解决方案:上锁,lock{执行的程序段}:同一时刻,只允许一个线程访问该程序段。 /// 死锁问题: /// 程序中的锁过多&#xf…

Java笔记:GC日志

1. 启用GC日志 -verbose:gc -XX:PrintGC -XX:PrintGCDetails -XX:PrintGCDateStamps -Xloggc:/opt/logs/gc.log在JDK 8中, -verbose:gc是 -XX:PrintGC一个别称,日志格式等价与: -XX:PrintGC。 不过在JDK 9中 -XX:PrintGC被标记deprecated…

ACM模板二:树、图、并查集、DancingLink

目录 〇,全文说明、宏定义代码 一,二叉树 二,树状数组、线段树 三,多叉树 四,并查集、DancingLink、无向图、最小生成树 五,有向图、单源最短路径、连通分量、拓扑排序 六,网格图、回路链…

深入解析顺序表:揭开数据结构的奥秘,掌握顺序表的精髓

💓 博客主页:江池俊的博客⏩ 收录专栏:数据结构探索👉专栏推荐:✅C语言初阶之路 ✅C语言进阶之路💻代码仓库:江池俊的代码仓库🔥编译环境:Visual Studio 2022&#x1f38…

【业务功能篇99】微服务-springcloud-springboot-电商订单模块-生成订单服务-锁定库存

八、生成订单 一个是需要生成订单信息一个是需要生成订单项信息。具体的核心代码为 /*** 创建订单的方法* param vo* return*/private OrderCreateTO createOrder(OrderSubmitVO vo) {OrderCreateTO createTO new OrderCreateTO();// 创建订单OrderEntity orderEntity build…

【ESP32】带 log 记录的 malloc 动态申请内存,用于debug 调试查找报错原因

本文章以ESP32为依托,旨在解决在【嵌入式工程】开发过程中,在动态申请内存这部分,由于 malloc 之后,忘记 free 释放,造成内存溢出导致 MCU重启的问题 📋 个人简介 💖 作者简介:大家好…

linux安装nacos2.2.0

1、使用docker拉取镜像:docker pull nacos/nacos-server:v2.2.0 2、下载官方配置文件:https://github.com/alibaba/nacos/releases 3、修改配置文件的数据库连接信息,修改完成后将配置文件移至挂载目录/home/shixp/docker/nacos/conf&#xf…

统计表和流程分析,也能同屏呈现_三叠云

表单统计&流程分析 路径 表单设计 >> 表单设置 >> 拓展设置 >> 表单统计 功能简介 新增表单统计、流程分析功能(Beta版)。可在当前列表,直接看到表单的统计表和流程分析数据统计图表。 1. 统计表:统计…

实时美颜的背后:视频直播美颜SDK的算法与原理

美颜技术的应用范围已经广泛扩展,从自拍照片到视频直播,都可以看到它的踪迹。然而,视频直播的实时性要求比静态图像高得多。要实现实时美颜,必须克服许多技术挑战。这就是视频直播美颜SDK的用武之地。 一、实时美颜的挑战 实时…

如何使用CMD恢复删除的分区?

分区删除后可以恢复吗? 磁盘分区旨在二级存储上创建一个或多个区域,然后你可以单独管理每个区域,这些区域就是分区。因此,对新安装的存储设备进行分区是很重要的环节,只有分区后才可以在这些设备上创建文件并保存数…

Spring Boot 下载文件(word/excel等)文件名中文乱码问题|构建打包不存在模版文件(templates等)

Spring Boot 下载文件(word/excel等)文件名中文乱码问题|构建打包不存在模版文件(templates等) 准备文件,这里我放在resource下的templates路径 在pom中配置构建打包的资源,更新maven 如果使用了assembly打包插件这样配置可能仍不生效&#…

理财是什么?怎样学习理财?

大家好,我是财富智星,今天跟大家分享一下理财是什么?怎样学习理财的方法。 一、理财的基本原则 1、理财应注重投资而不是投机,要与时间为友。 让我们先考虑以下问题:什么样的回报才算是真正的高回报?假设有…

2023年一级建造师建设工程经济真题

2023年一级建造师建设工程经济真题 1.根据《建设工程工程量清单计价规范》规定,代表专业工程的项目编码是 ()。 A、1,2 B、3,4 C、5,6 D、7,8,9 【答案】B 2.某公司希望所投资项目在第5年末回收1000万…

LoGoNet:基于局部到全局跨模态融合的精确 3D 目标检测

论文地址:https://arxiv.org/abs/2303.03595 论文代码:https://github.com/sankin97/LoGoNet 论文背景 激光雷达传感器点云通常是稀疏的,无法提供足够的上下文来区分远处的区域,从而造成性能次优。 激光雷达-摄像机融合方法在三…

[NLP] LLM---扩充词表LLama2-构建中文tokenization

使用SentencePiece的除了从0开始训练大模型的土豪和大公司外,大部分应该都是使用其为当前开源的大模型扩充词表,比如为LLama扩充通用中文词表(通用中文词表,或者 垂直领域词表)。那这部分工作有没有意义呢?…

实验室电磁铁EM4的技术参数

锦正茂EM4电磁铁可以通过更换电磁铁极头在一定范围内改善磁场的大小和磁场的均匀度 ,并且可以通过调整极头间距改变磁场的大小,该种类型的电磁铁能够很好的与客户设计的磁场平台兼容。主要用于磁滞现象研究、磁化系数测量、霍尔效应研究、磁光实验、磁场…

WebSocket的优缺点

WebSocket的优缺点 1. WebSocket概念 1.1 WebSocket优点 低延迟全双工长期运行双向实时通信 1.2 什么是心跳机制 为了保持WebSocket稳定的长连接,在建立连接后,服务器和客户端之间需要通过心跳包来保持连接状态,以防止连接因长时间没有数据传输而被切断. 心跳包是一直特殊…

学会使用MySQL数据库(1)数据库相关背景了解

目录 什么是数据库 客户端-服务器(Client-Server) 数据库分类 MySQL服务器安装 内存和外存 什么是数据库 存储数据用文件就可以了,为什么还要弄个数据库? 文件保存数据有以下几个缺点: 文件的安全性问题文件不利于数据查询…