过拟合和欠拟合:机器学习模型中的两个重要概念

文章目录

  • 🍋引言
  • 🍋过拟合和欠拟合的概念
  • 🍋过拟合和欠拟合的影响与危害
  • 🍋过拟合和欠拟合的原因与解决方法
  • 🍋过拟合和欠拟合的研究现状与发展趋势
  • 🍋过拟合&欠拟合---案例
  • 🍋总结

🍋引言

在机器学习模型中,过拟合和欠拟合是两种常见的问题。它们在模型训练和预测过程中扮演着重要的角色。了解过拟合和欠拟合的概念、影响、解决方法以及研究现状和趋势,对于提高机器学习模型性能和实用性具有重要意义。

🍋过拟合和欠拟合的概念

过拟合是指机器学习模型在训练数据上表现优良,但在测试数据上表现较差的现象。这意味着模型在训练数据集上学习了过多的特定细节,以至于在新的、未见过的数据上无法泛化。

相反,欠拟合是指机器学习模型在训练数据上和测试数据上都表现较差的现象。这意味着模型没有足够的学习能力来捕捉数据中的关键特征和模式。

🍋过拟合和欠拟合的影响与危害

过拟合和欠拟合都会对机器学习模型的性能产生负面影响。过拟合会导致模型在测试数据上的性能下降,使得模型无法泛化到实际应用场景。欠拟合则会使模型在训练数据上和测试数据上的性能都较差,无法准确预测新数据的标签或类别。

此外,过拟合和欠拟合还可能使模型对新数据的适应能力下降,导致在实际应用中效果不佳。因此,了解如何避免过拟合和欠拟合对于提高机器学习模型的性能至关重要。

🍋过拟合和欠拟合的原因与解决方法

过拟合和欠拟合的原因各不相同,但都与模型的复杂度和训练数据的量有关。过拟合通常由于模型复杂度过高,导致在训练数据上过度拟合,无法泛化到测试数据。解决方法包括简化模型、增加数据量、使用正则化方法等。

欠拟合则通常由于模型复杂度过低,无法捕捉到数据中的关键特征和模式。解决方法包括增加模型复杂度、使用集成学习方法、改进特征工程等。

🍋过拟合和欠拟合的研究现状与发展趋势

过拟合和欠拟合作为机器学习领域的重要研究课题,已经得到了广泛的关注和研究。目前,研究者们正在不断探索新的方法和技术来解决这些问题。

在未来,过拟合和欠拟合的研究将更加深入。一方面,研究者们将尝试开发更加高效的正则化方法和集成学习算法,以进一步提高模型的泛化能力和性能。另一方面,随着深度学习等新型算法的不断发展,如何将其应用于解决过拟合和欠拟合问题也将成为研究的重要方向。

🍋过拟合&欠拟合—案例

我们围绕上篇多项式回归,来介绍一下过拟合和欠拟合的案例

上篇其实已经展示了欠拟合
在这里插入图片描述
欠拟合比较好整,可以用多种方式提高模型的准确率,但是过拟合呢,下面我来简单介绍一下


首先导入一些必要的库

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures

然后我们还是准备之前的数据,这里我们设置了一个随机种子,保证大家的数据一致性,方便检阅

x = np.random.uniform(-3,3,size=100)
X = x.reshape(-1,1)
np.random.seed(666)
y = 0.5*x**2+x+3+np.random.normal(0,1,size=100)
X_train,X_test,y_train,y_test = train_test_split(X,y)

接下来我们定义两个函数polynomialRegression和plot_model,下面我一一解释
首先是polynomialRegression函数,其实就是之前的管道,它可以将输入数据转换为指定的多项式次数,然后对其进行标准化,并最后拟合一个线性回归模型

def polynomialRegression(degree):return Pipeline([('poly',PolynomialFeatures(degree=degree)),('std_scaler',StandardScaler()),('lin_reg',LinearRegression())])

再创建一个plot_model函数,用来进行绘制

def plot_model(poly_reg):y_predict = poly_reg.predict(X)plt.scatter(X,y)plt.plot(np.sort(x),y_predict[np.argsort(x)],color='r')plt.show()

我们接受训练好的模型poly_reg。这里的np.argsort(x)返回的是x排序后的索引,因此y_predict[np.argsort(x)]可以得到排序后的预测值。

接下来我们分别使用二次、十次、五十次、一百次多项式进行拟合数据

poly_reg = polynomialRegression(2)
poly_reg.fit(X,y)
y_predict = poly_reg.predict(X)
print(mean_squared_error(y,y_predict))
plot_model(poly_reg)

运行结果如下
在这里插入图片描述

poly_reg = polynomialRegression(10)
poly_reg.fit(X,y)
y_predict = poly_reg.predict(X)
print(mean_squared_error(y,y_predict))
plot_model(poly_reg)

运行结果如下
在这里插入图片描述

poly_reg = polynomialRegression(50)
poly_reg.fit(X,y)
y_predict = poly_reg.predict(X)
print(mean_squared_error(y,y_predict))
plot_model(poly_reg)

运行结果如下
在这里插入图片描述

poly_reg = polynomialRegression(100)
poly_reg.fit(X,y)
y_predict = poly_reg.predict(X)
print(mean_squared_error(y,y_predict))
plot_model(poly_reg)

运行结果如下
在这里插入图片描述
我们不难看出,目的为了拟合所有的特征点,导致模型变得过于复杂,这种情况就叫过拟合

接下来我们将训练好的模型进行预测并绘制(这里使用的是一百次)

x_plot = np.linspace(-3,3,100).reshape(100,1)
y_plot = poly_reg.predict(x_plot)plt.scatter(x,y)
plt.plot(x_plot,y_plot,color='r')
plt.axis([-3,3,-1,10])
plt.show()

运行结果如下
在这里插入图片描述
可以看出很糟糕,这就是过拟合带来的后果。就像识别一只猫和一只狗,过拟合会导致猫换个色就识别不出来是猫了,欠拟合则会阴差阳错的将猫识别为狗

🍋总结

过拟合和欠拟合是机器学习过程中的两个重要概念,对于提高模型的性能和实用性具有重要意义。了解过拟合和欠拟合的概念、影响、解决方法以及研究现状和发展趋势,有助于我们在实际应用中更好地应对和解决这些问题。

未来,过拟合和欠拟合的研究将继续深入发展,研究者们将不断探索新的方法和技术以解决这些问题。随着机器学习技术的广泛应用,过拟合和欠拟合的研究也将具有更加实际的应用价值。
请添加图片描述

挑战与创造都是很痛苦的,但是很充实。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/131610.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【基本数据结构 三】线性数据结构:栈

学习了数组和链表后,再来看看第三种线性表结构,也就是栈,栈和后边讲的队列一样是一种受限的线性表结构,正是因为其使用有限制,所以对于一些特定的需要操作可控的场合,受限的结构就非常有用。 栈的定义 我们平时放盘子的时候,都是从下往上一个一个放;取的时候,我们也…

Python 图形化界面基础篇:使用网格布局( Grid Layout )排列元素

Python 图形化界面基础篇:使用网格布局( Grid Layout )排列元素 引言什么是 Tkinter 的网格布局?步骤1:导入 Tkinter 模块步骤2:创建 Tkinter 窗口步骤3:创建网格步骤4:将元素放置在…

【学习笔记】元学习如何解决计算机视觉少样本学习的问题?

目录 1 计算机视觉少样本学习 2 元学习 3 寻找最优初始参数值方法:MAML 3.1 算法步骤 3.2 代码:使用MAML 和 FO-MAML、任务增强完成Few-shot Classification 4 距离度量方法:Siamese Network,ProtoNet,RN 4.1 孪生网络(Sia…

软件测试7大误区

随着软件测试对提高软件质量重要性的不断提高,软件测试也不断受到重视。但是,国内软件测试过程的不规范,重视开发和轻视测试的现象依旧存在。因此,对于软件测试的重要性、测试方法和测试过程等方面都存在很多不恰当的认识&#xf…

驱动开发,stm32mp157a开发板的led灯控制实验(再优化),使用ioctl函数,通过字符设备驱动分步注册方式编写LED驱动,完成设备文件和设备的绑定

1.实验目的 编写LED灯的驱动,在应用程序中编写控制LED灯亮灭的代码逻辑实现LED灯功能的控制; 2. LED灯相关寄存器分析 LED1->PE10 LED1亮灭: RCC寄存器[4]->1 0X50000A28 GPIOE_MODER[21:20]->01 (输出) 0X50006000 GPIOE_ODR[10]-&…

024 - STM32学习笔记 - 液晶屏控制(一) - LTDC与DMA2D初始

024- STM32学习笔记 - LTDC控制液晶屏 在学习如何控制液晶屏之前,先了解一下显示屏的分类,按照目前市场上存在的各种屏幕材质,主要分为CRT阴极射线管显示屏、LCD液晶显示屏、LED显示屏、OLED显示屏,在F429的开发板上,…

Linux HTTP协议

目录 1.浏览器与服务器通信过程2.HTTP请求报头(1)HTTP的请求报头结构(2)HTTP的请求方法 3.HTTP应答报头(1)HTTP的应答报头结构(2) HTTP的应答状态 1.浏览器与服务器通信过程 浏览器…

Unity3D之动态生成指定数量带间隔的地面

文章目录 准备代码实现实现效果 准备 空物体生成脚本地面预制体 代码实现 using System.Collections; using System.Collections.Generic; using System.Runtime.CompilerServices; using UnityEngine;public class CreateGround : MonoBehaviour {[SerializeField]public i…

Java版的数据结构——栈和队列

目录 1. 栈(Stack) 1.1 概念 1.2 栈的使用 1.3 栈的模拟实现 1.4 栈的应用场景 1.4.1 改变元素的序列 1.4.2 将递归转化为循环 2. 队列(Queue) 2.1 概念 2.2 队列的使用 2.3 队列模拟实现 2.4 循环队列 3. 双端队列&…

Navicat15 /16 已连接数据库密码解密

前言 相信你会遇到使用navicat忘记已连接数据密码的问题吧!实在是,密码太多容易忘记!!! 感谢大佬as_dmy的文章如何查看navicat已连接数据库密码,然后才有了此文! 1.0版本需要手动查看导出的co…

垃圾收集算法

1.如何判断对象是否存活? 1.1引用计数算法 基本思路: 在对象中添加一个引用计数器每当有一个地方引用它的时候,计数器就加1每当有一个引用失效的时候,计数器就减-1当计数器的值为0的时候,那么该对象就是可被GC回收的…

vue基础知识八:为什么data属性是一个函数而不是一个对象?

一、实例和组件定义data的区别 vue实例的时候定义data属性既可以是一个对象,也可以是一个函数 const app new Vue({el:"#app",// 对象格式data:{foo:"foo"},// 函数格式data(){return {foo:"foo"}} })组件中定义data属性&#xff…

网站文章生成技术-网站文章生成工具免费

大家好,今天我想和大家分享一些关于网站文章生成的疑虑和期待。作为一个常常需要在网站上发布文章的人,我对这项技术的发展充满了好奇和担忧。在这篇文章中,我将坦率地表达我的想法,希望能引发一些思考。 让我谈一谈我的疑虑。网站…

基于SSM的农产品仓库管理系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…

TypeScript命名空间和模块

🎬 岸边的风:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 命名空间(Namespace) 命名空间(Namespace)使用场景 第三方库 兼容…

【C语言】【strcpy的使用和模拟实现】

1.strcpy的使用: char* strcpy(char* destination,const char* source)返回类型是字符指针,参数是接受方字符串的首地址和要拷贝的字符串的首地址 从接受地的‘\0’开始拷贝,会将源字符串中的’\0’也拷贝过来目标空间必须足够大&#xff0…

【JavaEE】_CSS引入方式与选择器

目录 1. 基本语法格式 2. 引入方式 2.1 内部样式 2.2 内联样式 2.3 外部样式 3. 基础选择器 3.1 标签选择器 3.2 类选择器 3.3 ID选择器 4. 复合选择器 4.1 后代选择器 4.2 子选择器 4.3 并集选择器 4.4 伪类选择器 1. 基本语法格式 选择器若干属性声明 2. 引入…

terraform简单的开始-安装和一些配置

terraform的安装: 官方下载: 浏览器打开terraform官方主页https://www.terraform.io/ 点击Download Terraform 跳转到程序下载页面: 找到自己对应的操作系统,按照操作系统选择安装terraform的方式: linux为例&…

LabVIEW利用人工神经网络辅助进行结冰检测

LabVIEW利用人工神经网络辅助进行结冰检测 结冰对各个领域构成重大威胁,包括但不限于航空航天和风力涡轮机行业。在起飞过程中,飞机机翼上轻微积冰会导致升力降低25%。研究报告称,涡轮叶片上的冰堆积可在19个月的运行时间内造成29MWh的功率损…

《86盒应用于家居中控》——实现智能家居的灵动掌控

近年来,智能家居产品受到越来越多消费者的关注,其便捷、舒适的生活方式让人们对未来生活充满期待。作为智能家居方案领域的方案商,启明智显生产设计的86盒凭借出色的性能和良好的用户体验,成功应用于家居中控系统,让家…