FPGA GTH aurora 8b/10b编解码 PCIE 视频传输,提供2套工程源码加QT上位机源码和技术支持

目录

  • 1、前言
    • 免责声明
  • 2、我这里已有的 GT 高速接口解决方案
  • 3、GTH 全网最细解读
    • GTH 基本结构
    • GTH 发送和接收处理流程
    • GTH 的参考时钟
    • GTH 发送接口
    • GTH 接收接口
    • GTH IP核调用和使用
  • 4、设计思路框架
    • 视频源选择
    • silicon9011解码芯片配置及采集
    • 动态彩条
    • 视频数据组包
    • GTH aurora 8b/10b
    • 数据对齐
    • 视频数据解包
    • 图像缓存
    • XDMA及其中断模式的使用
    • QT上位机及其源码
  • 5、vivado工程1-->2路SFP传输
  • 6、vivado工程2-->1路SFP传输
  • 7、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 8、上板调试验证
    • 光纤连接
    • 动态演示
  • 9、福利:工程代码的获取

1、前言

没玩过GT资源都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。
GT资源是Xilinx系列FPGA的重要卖点,也是做高速接口的基础,不管是PCIE、SATA、MAC等,都需要用到GT资源来做数据高速串化和解串处理,Xilinx不同的FPGA系列拥有不同的GT资源类型,低端的A7由GTP,K7有GTX,V7有GTH,更高端的U+系列还有GTY等,他们的速度越来越高,应用场景也越来越高端。。。

本文使用Xilinx的Virtex7 FPGA的GTH资源做视频传输实验,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用笔记本电脑模拟HDMI视频,silicon9011解码输入的HDMI为GRB后供FPGA使用;如果你得手里没有摄像头,或者你得开发板没有HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的`define宏定义进行,默认使用HDMI输入作为视频源;调用GTH IP核,用verilog编写视频数据的编解码模块和数据对齐模块,使用开发板硬件上的2个SFP光口实现数据的收发,FPGA接收到SFP发来的高速数据后,用FDMA将数据写进DDR3中缓存,然后调用XDMA去读取DDR3中的数据,再通过XDMA通过PCIE2.0总线将数据发送给电脑主机,电脑端用QT上位机接收并显示图像;本博客提供2套vivado工程源码,2套工程的不同点在于使用1个SFP光口做收发还是两个2个SFP光口做收发;

本博客详细描述了FPGA GTH 8b/10b编解码 PCIE 视频传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、我这里已有的 GT 高速接口解决方案

我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往

3、GTH 全网最细解读

关于GTH 介绍最详细的肯定是Xilinx官方的《ug476_7Series_Transceivers》,我们以此来解读:
《ug476_7Series_Transceivers》的PDF文档我已放在了资料包里,文章末尾有获取方式;
我用到的开发板FPGA型号为Xilinx Virtex7 xc7vx690tffg1761-3;带有8路GTH 资源,其中2路连接到了2个SFP光口,每通道的收发速度为 500 Mb/s 到 10.3125 Gb/s 之间。GTH 收发器支持不同的串行传输接口或协议,比如 PCIE 1.1/2.0 接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;

GTH 基本结构

Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为四路 GTH 收发器在Virtex7 FPGA 芯片中的示意图:《ug476_7Series_Transceivers》第24页;
在这里插入图片描述
GTH 的具体内部逻辑框图如下所示,它由四个收发器通道 GTHE2_CHANNEL原语 和一个GTHE2_COMMON 原语组成。每路GTHE2_CHANNEL包含发送电路 TX 和接收电路 RX,GTHE2_CHANNEL的时钟可以来自于CPLL或者QPLL,可在IP配置界面里配置;《ug476_7Series_Transceivers》第25页;
在这里插入图片描述
每个 GTHE2_CHANNEL 的逻辑电路如下图所示:《ug476_7Series_Transceivers》第26页;
在这里插入图片描述
GTHE2_CHANNEL 的发送端和接收端功能是独立的,均由 PMA(Physical Media Attachment,物理媒介适配层)和 PCS(Physical Coding Sublayer,物理编码子层)两个子层组成。其中 PMA 子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS 子层包含8B/10B 编解码、缓冲区、通道绑定和时钟修正等电路。
这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;

GTH 发送和接收处理流程

首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。

GTH 的参考时钟

GTH 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTH 模块的参考时钟源,用户可以自行选择。一般的A7系列开发板上,都有一路 148.5Mhz 的 GTH 参考时钟连接到 MGTREFCLK0上,作为 GTH 的参考时钟。差分参考时钟通过IBUFDS 模块转换成单端时钟信号进入到 GTHE2_COMMOM 的QPLL或CPLL中,产生 TX 和 RX 电路中所需的时钟频率。TX 和 RX 收发器速度相同的话,TX 电路和 RX 电路可以使用同一个 PLL 产生的时钟,如果 TX 和 RX收发器速度不相同的话,需要使用不同的 PLL 时钟产生的时钟。参考时钟这里Xilinx给出的GT参考例程已经做得很好了,我们调用时其实不用修改;GTH 的参考时钟结构图如下:《ug476_7Series_Transceivers》第31页;
在这里插入图片描述

GTH 发送接口

《ug476_7Series_Transceivers》的第107到165页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTH 例化时留给用户的发送部分需要用到的接口;
在这里插入图片描述

用户只需要关心发送接口的时钟和数据即可,GTH 例化模块的这部分接口如下:
在这里插入图片描述
在这里插入图片描述
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
在这里插入图片描述

GTH 接收接口

《ug476_7Series_Transceivers》的第167到295页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTH 例化时留给用户的发送部分需要用到的接口;
在这里插入图片描述
用户只需要关心接收接口的时钟和数据即可,GTH 例化模块的这部分接口如下:
在这里插入图片描述
在这里插入图片描述
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
在这里插入图片描述

GTH IP核调用和使用

在这里插入图片描述
有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:
在这里插入图片描述
这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可,不再需要打开example工程,再复制下面的一堆文件放到自己的工程什么的,玩儿个GTH需要那么复杂么?
在这里插入图片描述
这里对上图的标号做解释:
1:线速率,根据自己的项目需求来,GTH的范围是0.5到13.1G,由于我的项目是视频传输,所以在GTH的速率范围内均可,本例程选择了5G;
2:参考时钟,这个得根据你的原理图来,可以是80M、125M、148.5M、156.25M等等,我的开发板是156.25M;
4:GTH组的绑定,这个很重要,他的绑定参考依据有两个,已是你的开发板原理图,而是官方的参考资料《ug476_7Series_Transceivers》,官方根据BANK不同将GTH资源分成了多组,由于GT资源是Xilinx系列FPGA的专用资源,占用专用的Bnak,所以引脚也是专用的,那么这些GTH组和引脚是怎么对应的呢?《ug476_7Series_Transceivers》的说明如下:红框内为的我的开发板原理图对应的FPGA引脚;
在这里插入图片描述
我的板子原理图如下:
在这里插入图片描述
在这里插入图片描述
选择外部数据位宽32bit的8b/10b编解码,如下:
在这里插入图片描述
下面这里讲的是K码检测:
在这里插入图片描述
这里选择K28.5,也就是所谓的COM码,十六进制为bc,他的作用很多,可以表示空闲乱序符号,也可以表示数据错位标志,这里用来标志数据错位,8b/10b协议对K码的定义如下:
在这里插入图片描述
下面讲的是时钟矫正,也就是对应GTH内部接收部分的弹性buffer;
在这里插入图片描述
这里有一个时钟频偏的概念,特别是收发双方时钟不同源时,这里设置的频偏为100ppm,规定每隔5000个数据包发送方发送一个4字节的序列,接收方的弹性buffer会根据这4字节的序列,以及数据在buffer中的位置来决定删除或者插入一个4字节的序列中的一个字节,目的是确保数据从发送端到接收端的稳定性,消除时钟频偏的影响;

4、设计思路框架

本博客提供2套vivado工程源码,2套工程的不同点在于使用1个SFP光口做收发还是两个2个SFP光口做收发;使用1个SFP光口做收发是用光纤连接SFP的RX和TX;使用2个SFP光口做收发是用光纤连接一个SFP的RX和另一个SFP的TX;设计思路框架分别如下:
使用2个SFP光口框图如下:
在这里插入图片描述
使用1个SFP光口框图如下:
在这里插入图片描述

视频源选择

视频源有两种,分别对应开发者手里有没有摄像头的情况,如果你的手里有摄像头,或者你的开发板有HDMI输入接口,则使用HDMI输入作为视频输入源,我这里用到的是笔记本模拟HDMI视频,silicon9011解码芯片解码HDMI;如果你得手里没有摄像头,或者你得开发板没有HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,动态彩条是移动的画面,完全可以模拟视频;默认使用HDMI输入作为视频源;视频源的选择通过代码顶层的`define宏定义进行;如下:
在这里插入图片描述
选择逻辑代码部分如下:
在这里插入图片描述
选择逻辑如下:
当(注释) define COLOR_TEST时,输入源视频是动态彩条;
当(不注释) define COLOR_TEST时,输入源视频是HDMI输入;

silicon9011解码芯片配置及采集

silicon9011解码芯片需要i2c配置才能使用,关于silicon9011解码芯片的配置和使用,请参考我往期的博客,博客地址:点击直接前往
silicon9011解码芯片配置及采集这两部分均用verilog代码模块实现,代码位置如下:
在这里插入图片描述
代码中配置为1920x1080分辨率;

动态彩条

动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,我这里配置为辨率1920x1080,动态彩条模块代码位置和顶层接口和例化如下:
在这里插入图片描述
在这里插入图片描述

视频数据组包

由于视频需要在GTH中通过aurora 8b/10b协议收发,所以数据必须进行组包,以适应aurora 8b/10b协议标准;视频数据组包模块代码位置如下:
在这里插入图片描述
首先,我们将16bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTH发送;在此之前,需要对一帧视频进行编号,也叫作指令,GTH组包时根据固定的指令进行数据发送,GTH解包时根据固定的指令恢复视频的场同步信号和视频有效信号;当一帧视频的场同步信号上升沿到来时,发送一帧视频开始指令 0,当一帧视频的场同步信号下降沿到来时,发送一帧视频开始指令 1,视频消隐期间发送无效数据 0 和无效数据 1,当视频有效信号到来时将每一行视频进行编号,先发送一行视频开始指令,在发送当前的视频行号,当一行视频发送完成后再发送一行视频结束指令,一帧视频发送完成后,先发送一帧视频结束指令 0,再发送一帧视频结束指令 1;至此,一帧视频则发送完成,这个模块不太好理解,所以我在代码里进行了详细的中文注释,需要注意的是,为了防止中文注释的乱序显示,请用notepad++编辑器打开代码;指令定义如下:
在这里插入图片描述
指令可以任意更改,但最低字节必须为bc;

GTH aurora 8b/10b

这个就是调用GTH做aurora 8b/10b协议的数据编解码,前面已经对GTH做了详细概述,这里不讲;代码位置如下:
在这里插入图片描述

数据对齐

由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:
在这里插入图片描述
我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4’b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4’b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4’b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4’b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4’b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;

视频数据解包

数据解包是数据组包的逆过程,代码位置如下:
在这里插入图片描述
GTH 解包时根据固定的指令恢复视频的场同步信号和视频有效信号;这些信号是作为后面图像缓存的重要信号;
至此,数据进出GTH 部分就已经讲完了,整个过程的框图我在代码中描述了,如下:
在这里插入图片描述

图像缓存

经常看我博客的老粉应该都知道,我做图像缓存的套路是FDMA,他的作用是将图像送入DDR中做3帧缓存再读出显示,目的是匹配输入输出的时钟差和提高输出视频质量,关于FDMA,请参考我之前的博客,博客地址:点击直接前往
这里需要注意的是,我的开发板的DDR3并不是直接贴片的DDR3颗粒,而是SODIMM接口的DDR3内存条,这种情况下,MIG的配置方式是不一样的,基于此,我在之前专门写过一篇博客介绍FPGA MIG 如何配置SODIMM接口的DDR3内存条的博客,可以到那里看看,请参考我之前的博客,博客地址:点击直接前往

XDMA及其中断模式的使用

本设计使用Xilinx官方的XDMA方案搭建基于Xilinx系列FPGA的PCIE通信平台,使用XDMA的中断模式与QT上位机通讯,即QT上位机通过软件中断的方式实现与FPGA的数据交互;XDMA将从SFP接收到的视频从DDR3中读取出来,通过PCIE总线发送给电脑主机,电脑主机运行QT上位机软件,QT软件通过通断方式接收PCIE发来的图像数据并实时显示图像;

本设计的关键在于我们编写了一个 XDMA中断模块。该模块用来配合驱动处理中断,xdma_inter.v 提供了AXI-LITE 接口,上位机通过访问 user 空间地址读写 xdma_inter.v 的寄存器。该 模块 在 user_irq_req_i 输入的中断位,寄存中断位号,并且输出给 XDMA IP ,当上位机的驱动响应中断的时候,在中断里面写 xdma_inter.v 的寄存器,清除已经处理的中断。DMA中断模块代码位置如下:
在这里插入图片描述
XDMA配置为X8模式,5G线速率,如下:
在这里插入图片描述
关于基于XDMA的PCIE应用,请参考我的PCIE通信专栏,专栏地址:点击直接前往

QT上位机及其源码

QT上位机本方案使用 VS2015 + Qt 5.12.10 完成上位机开发软件环境搭建,QT程序调用XDMA官方API采用中断模式实现与FPGA的数据交互,本例程实现的是读写测速,提供QT上位机软件及其源码,路径如下:
在这里插入图片描述
QT源码部分截图如下:
在这里插入图片描述

5、vivado工程1–>2路SFP传输

开发板FPGA型号:Xilinx–Virtex7–xc7vx690tffg1761-3;
开发环境:Vivado2019.1;
输入:HDMI或者动态彩条,分辨率1920x1080@60Hz;
输出:PCIE2.0 X8;
应用:2路SFP GTH 8b/10b编解码 PCIE 视频传输;
工程Block Design如下:
在这里插入图片描述
工程代码架构如下:
在这里插入图片描述
综合编译完成后的FPGA资源消耗和功耗预估如下:
在这里插入图片描述

6、vivado工程2–>1路SFP传输

开发板FPGA型号:Xilinx–Virtex7–xc7vx690tffg1761-3;
开发环境:Vivado2019.1;
输入:HDMI或者动态彩条,分辨率1920x1080@60Hz;
输出:PCIE2.0 X8;
应用:1路SFP GTH 8b/10b编解码 PCIE 视频传输;
工程Block Design如下:
在这里插入图片描述
工程代码架构如下:
在这里插入图片描述
综合编译完成后的FPGA资源消耗和功耗预估如下:
在这里插入图片描述

7、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

8、上板调试验证

光纤连接

工程2:1路SFP传输的光纤接法如下:
在这里插入图片描述
HDMI输入后的输出效果:
当GTH运行5线速率时输出如下:
在这里插入图片描述
动态彩条输出效果:
当GTH运行5G线速率时输出如下:
在这里插入图片描述

动态演示

动态彩条输出效果演示视频:

V7-GTH-COLOR

9、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/131874.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java native 关键字

如你在看 JDK 的源代码的时候,大概率会看到很多方法使用了 native 关键字。 下面是 String 对象 JDK 中的源代码,就带有了一个 native 关键字。 native 是干什么用的 简单来说就是 Java 的 native 方法的实现不是用 Java 实现的,可能在其他…

Flutter 中的单元测试:从工作流基础到复杂场景

对 Flutter 的兴趣空前高涨——而且早就应该出现了。 Google 的开源 SDK 与 Android、iOS、macOS、Web、Windows 和 Linux 兼容。单个 Flutter 代码库支持所有这些。单元测试有助于交付一致且可靠的 Flutter 应用程序,通过在组装之前先发制人地提高代码质量来确保不…

数据结构与算法(二)——前缀、中缀、后缀表达式

一、前缀表达式(波兰表达式) 1.1、计算机求值 从右至左扫描表达式,遇到数字时,将数字压入堆栈。遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素 和 次顶元素&#xff09…

Navicat导入Excel数据顺序变了

项目场景: Navicat导入Excel数据 问题描述 从Excel表格中导入数据到数据库中。但是,在导入的过程中,我们常会发现数据顺序出现了问题,导致数据错位,给数据的处理带来了极大的麻烦。 原因分析: 这个问题的…

mybatisplus配置拦截器实现保存加密,输出解密,模糊查询

前言:因公司需求需要把某些实体类的某些字段值进行加密保存,在查询时解密明文输出。现记录两种方式。 一、第一种方式: (1)使用TableField(typeHandler TypeHandler.class)注解自带的字段类型处理器,写一…

电脑死机的时候,CPU到底在做什么?

电脑死机,应该每个接触计算机的小伙伴都经历过吧。 尤其是早些年,电脑配置还没现在这么高的时候,多开几个重量级应用程序,死机就能如约而至,就算你把键盘上的CTRLALTDELETE按烂了,任务管理器也出不来&…

Mybatis-Genertor逆向工程

1、导入mybaties插件 <build><plugins><plugin><groupId>org.mybatis.generator</groupId><artifactId>mybatis-generator-maven-plugin</artifactId><version>1.4.2</version><dependencies><dependency>…

Error: svn: E155004: Run ‘svn cleanup‘ to remove locks

解决办法如下&#xff1a;点击settings 点击清除缓存按钮&#xff0c;然后再使用svn进行提交更新操作&#xff0c;但是可能还会有其它的错误&#xff0c;比如svn: E230001: Server SSL certificate verification failed&#xff0c;解决这个错误请参考我另一篇文章&#xff1a;…

博客系统(升级(Spring))(一)创建数据库,创建实例化对象,统一数据格式,统一报错信息

博客系统&#xff08;一&#xff09; 博客系统一、创建项目二、建立数据库结构链接服务器和数据库和Redis 三、创建实例化对象四、统一数据结构结构 五、统一报错信息 博客系统 博客系统是干什么的&#xff1f; CSDN就是一个典型的博客系统。而我在这里就是通过模拟实现一个博…

Python+Requests+Excel接口测试实战

1、EXCEL文件接口保存方式&#xff0c;如图。 2、然后就是读取EXCEL文件中的数据方法&#xff0c;如下&#xff1a; 1 import xlrd2 3 4 class readExcel(object):5 def __init__(self, path):6 self.path path7 8 property9 def getSheet(self): 10 …

莫比乌斯召回系统介绍

当前召回系统只能召回相关性高的广告&#xff0c;但不能保证该广告变现能力强。莫比乌斯做了如下两点创新&#xff1a; 在召回阶段&#xff0c;引入CPM等业务指标作为召回依据在召回阶段&#xff0c;引入CTR模型&#xff0c;从而召回更多相关性高且变现能力强的广告 参考 百度…

基于Protege的知识建模实战

一.Protege简介、用途和特点 1.Protege简介 Protege是斯坦福大学医学院生物信息研究中心基于Java开发的本体编辑和本体开发工具&#xff0c;也是基于知识的编辑器&#xff0c;属于开放源代码软件。这个软件主要用于语义网中本体的构建&#xff0c;是语义网中本体构建的核心开发…

Elasticsearch:什么是生成式人工智能?

生成式人工智能定义 给学生的解释&#xff08;基本&#xff09;&#xff1a; 生成式人工智能是一种可以创造新的原创内容的技术&#xff0c;例如艺术、音乐、软件代码和写作。 当用户输入提示时&#xff0c;人工智能会根据从互联网上现有示例中学到的知识生成响应&#xff0c;…

linux安装Sentinal1.8.6

前言&#xff1a; 使用docker search sentinel-dashboard命令&#xff0c;发现docker中的镜像版本过低&#xff0c;由于要配合使用1.8.6&#xff0c;所以这里采用java后台运行sentinel1.8.6-jar的方式。 1、官网下载对应版本jar&#xff08;https://github.com/alibaba/Sentin…

MySQL间隙锁深入分析

概念 什么是间隙锁&#xff1f; MySQL的间隙锁&#xff08;gap lock&#xff09;是一种锁定相邻数据间隔的机制。 触发时机&#xff1f; 当使用SELECT…FOR UPDATE或UPDATE语句时&#xff0c;MySQL会获取一个范围锁&#xff0c;包括指定条件内的所有数据行&#xff0c;并且还…

rhcsa4 进程和SSH

tree命令。用于以树状结构显示目录和文件。通过运行 “tree” 命令可视化地查看文件系统中的目录结构。 tree / systemd是第一个系统进程&#xff08;pid1&#xff09;不启动&#xff0c;其他进程也没法启动&#xff0c; 用pstree查看进程树 我们可以看到所有进程都是syste…

设计模式之模板模式

文章目录 豆浆制作问题模板方法模式基本介绍模板方法模式原理类图对原理类图的说明-即(模板方法模式的角色及职责)模板方法模式解决豆浆制作问题模板方法模式的钩子方法模板方法模式的注意事项和细节 豆浆制作问题 编写制作豆浆的程序&#xff0c;说明如下: 制作豆浆的流程 选…

RocketMQ 消息传递模型

文章目录 0. 前言1. RocketMQ的消息传递模型1.1. 同步发送1.2. 异步发送1.3. 单向发送 2. RocketMQ的批量发送和消费2.1 批量发送2.2 批量消费2.3 Spring Boot集成RocketMQ官方starter 示例 3. 总结4. 参考文档5. 源码地址 0. 前言 RocketMQ 支持6种消息传递方式&#xff0c;我…

pyarmor 加密许可证的使用

一 pyarmor 许可证的用处 文档&#xff1a;5. 许可模式和许可证 — Pyarmor 8.3.6 文档 试用版本有如下的限制&#xff1a; 加密功能对脚本大小有限制&#xff0c;不能加密超过限制的大脚本。 混淆字符串功能在试用版中无法使用。 RFT 加密模式&#xff0c;BCC 加密模式在试…

解决java.io.IOException: Network error

解决java.io.IOException: Network error 解决java.io.IOException: Network error摘要引言正文1. 理解异常的根本原因2. 处理网络连接问题3. 处理连接超时4. 处理协议错误或不匹配5. 异常处理 总结参考资料 博主 默语带您 Go to New World. ✍ 个人主页—— 默语 的博客&#…