线性代数的本质(九)——二次型与合同

文章目录

  • 二次型与合同
    • 二次型与标准型
    • 二次型的分类
    • 度量矩阵与合同

二次型与合同

二次型与标准型

Grant:二次型研究的是二次曲面在不同基下的坐标变换

由解析几何的知识,我们了解到二次函数的一次项和常数项只是对函数图像进行平移,并不会改变图形的形状和大小。以一元二次函数为例

在这里插入图片描述

而二次函数的二次项控制函数图像的大小和形状。以二元二次函数为例,观察 f ( x , y ) = 1 f(x,y)=1 f(x,y)=1 的截面图形

在这里插入图片描述

线性代数主要研究这些图形的二次项,通过线性变换使二次曲面变得规范简洁。

定义 n n n 元二次齐次多项式
f ( x 1 , ⋯ , x n ) = a 11 x 1 2 + 2 a 12 x 1 x 2 + ⋯ + 2 a 1 n x 1 x n + a 22 x 2 2 + 2 a 23 x 2 x 3 + ⋯ + 2 a 2 n x 2 x n + a n n x n 2 \begin{aligned} f(x_1,\cdots,x_n)=&a_{11}x_1^2+2a_{12}x_1x_2+\cdots+2a_{1n}x_1x_n \\ &+a_{22}x_2^2+2a_{23}x_2x_3+\cdots+2a_{2n}x_2x_n \\ &+a_{nn}x_n^2 \end{aligned} f(x1,,xn)=a11x12+2a12x1x2++2a1nx1xn+a22x22+2a23x2x3++2a2nx2xn+annxn2
称为二次型(quadratic form),这其实是二次曲面在一组坐标基下的解析表达式。

利用矩阵乘法,二次型可简记为
f = [ x 1 x 2 ⋯ x n ] [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] [ x 1 x 2 ⋮ x n ] = x T A x f=\begin{bmatrix}x_1&x_2&\cdots&x_n\end{bmatrix} \begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{m1}&a_{m2}&\cdots&a_{mn} \\ \end{bmatrix} \begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix} =\mathbf x^TA\mathbf x f=[x1x2xn] a11a21am1a12a22am2a1na2namn x1x2xn =xTAx
其中 A A A 是对称阵,其主对角线元素是平方项的系数,其余元素 a i j = a j i a_{ij}=a_{ji} aij=aji 是二次项 x i x j x_ix_j xixj 系数 2 a i j 2a_{ij} 2aij 的一半。显然,对称矩阵 A A A 与二次型 f f f 是相互唯一确定的。矩阵 A A A 及其秩分别称为二次型的矩阵和秩。

在某些情况下,没有交叉乘积项的二次型会更容易使用,即通过线性变换 x = C y \mathbf x=C\mathbf y x=Cy 来消除交叉乘积项
f = x T A x = x = C y y T ( C T A C ) y = y T Λ y f=\mathbf x^TA\mathbf x\xlongequal{\mathbf x=C\mathbf y}\mathbf y^T(C^TAC)\mathbf y=\mathbf y^T\Lambda\mathbf y f=xTAxx=Cy yT(CTAC)y=yTΛy
由于矩阵 A A A 是对称阵,由上节对称矩阵的对角化知道,总有正交矩阵 C C C,使
C − 1 A C = C T A C = Λ C^{-1}AC=C^TAC=\Lambda C1AC=CTAC=Λ
Λ \Lambda Λ 的对角线元素是 A A A 的特征值,于是二次型可简化为
f = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 f=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 f=λ1y12+λ2y22++λnyn2
这种只含平方项的二次型称为标准型(standard form)。显然,标准形的矩阵是对角阵。任何二次型都可通过正交变换化为标准型。系数全为 +1,-1或 0 的标准型叫做规范型(gauge form)。

定义:设 A A A B B B n n n阶矩阵,若有 n n n阶可逆矩阵 C C C,使
B = C T A C B=C^TAC B=CTAC
则称矩阵 A A A B B B合同,记为 A ≃ B A\simeq B AB 。显然,合同矩阵即为二次型在不同基下的矩阵。

性质:设矩阵 A ≃ B A\simeq B AB

  1. A A A 为对称阵,则 B B B 也为对称阵;
  2. 合同矩阵的秩相等 rank ( A ) = rank ( B ) \text{rank}(A)=\text{rank}(B) rank(A)=rank(B)

化二次型为标准型的三种方法:

  1. 求矩阵 A A A 的特征值和特征向量化为标准型;
  2. 使用多项式配方法化为标准型;
  3. 使用初等变换法将上方的矩阵 A A A 的位置变为对角阵(左乘为行变换,不影响下方单位阵变换)
    [ A I ] → [ C T A C C ] \begin{bmatrix}A\\I\end{bmatrix}\xrightarrow{}\begin{bmatrix}C^TAC\\C\end{bmatrix} [AI] [CTACC]

例:将椭圆方程 5 x 1 2 − 4 x 1 x 2 + 5 x 2 2 = 48 5x_1^2-4x_1x_2+5x_2^2=48 5x124x1x2+5x22=48 标准化

解:二次型的矩阵 A = [ 5 − 2 − 2 5 ] A=\begin{bmatrix}5&-2\\-2&5\end{bmatrix} A=[5225] ,特征值分别为 3和 7,对应的单位特征向量为
u 1 = [ 1 / 2 1 / 2 ] , u 2 = [ − 1 / 2 1 / 2 ] \mathbf u_1=\begin{bmatrix}1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix}, \mathbf u_2=\begin{bmatrix}-1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix} u1=[1/2 1/2 ],u2=[1/2 1/2 ]
可使用特征向量 u 1 , u 2 \mathbf u_1,\mathbf u_2 u1,u2 作为二次型的标准正交基。正交变换矩阵和标准型矩阵分别为
C = ( u 1 , u 2 ) = [ 1 / 2 − 1 / 2 1 / 2 1 / 2 ] , Λ = [ 3 0 0 7 ] C=(\mathbf u_1,\mathbf u_2)=\begin{bmatrix}1/\sqrt{2}&-1/\sqrt{2}\\1/\sqrt{2}&1/\sqrt{2}\end{bmatrix},\quad \Lambda=\begin{bmatrix}3&0\\0&7\end{bmatrix} C=(u1,u2)=[1/2 1/2 1/2 1/2 ],Λ=[3007]
C C C 可将 A A A 正交对角化, Λ = C T A C \Lambda=C^TAC Λ=CTAC 。所以正交变换 x = P y \mathbf x=P\mathbf y x=Py 得到的标准型为
y T C y = 3 y 1 2 + 7 y 2 2 \mathbf y^TC\mathbf y=3y_1^2+7y_2^2 yTCy=3y12+7y22
新的坐标轴如图

在这里插入图片描述

二次型的分类

定义:设二次型 f = x T A x f=\mathbf x^TA\mathbf x f=xTAx ,如果对于任何 x ≠ 0 \mathbf x\neq 0 x=0

  1. 都有 f ( x ) > 0 f(\mathbf x)>0 f(x)>0,则称 f f f正定二次型,称 A A A正定矩阵
  2. 都有 f ( x ) < 0 f(\mathbf x)<0 f(x)<0,则称 f f f负定二次型,称 A A A负定矩阵
  3. 如果 f ( x ) f(\mathbf x) f(x) 既有正值又有负值,则称为不定二次型

从上节可以看出二次型的标准型是不唯一的,但二次型的秩是唯一的,在化成标准型的过程中是不变的,即标准型中含有的非零平方项的个数是不变的。

惯性定理:二次型和标准型中系数为正的平方项的个数相同,称为正惯性指数;系数为负的平方项的个数也相同,称为负惯性指数;正负惯性指数之差称为符号差

定理

  1. n n n元二次型为正定的充要条件是它的正惯性指数为 n n n
  2. 对称阵 A A A正定 ⟺ \iff 特征值全为正 ⟺ \iff 与单位阵合同 A ≃ I A\simeq I AI
  3. 对称阵 A A A 正定 ⟹ \implies A − 1 A^{-1} A1 正定;

度量矩阵与合同

Grant:合同矩阵为不同坐标系下的度量矩阵。

以二维空间为例,Grant 选用标准坐标系下的基向量 i , j \mathbf i,\mathbf j i,j,度量矩阵
A = [ ⟨ i , i ⟩ ⟨ i , j ⟩ ⟨ j , i ⟩ ⟨ j , j ⟩ ] A=\begin{bmatrix} \lang\mathbf i,\mathbf i\rang&\lang\mathbf i,\mathbf j\rang \\ \lang\mathbf j,\mathbf i\rang&\lang\mathbf j,\mathbf j\rang \end{bmatrix} A=[i,ij,ii,jj,j]

而 Jennifer 使用另外一组基向量 i ′ , j ′ \mathbf i',\mathbf j' i,j,过渡矩阵 P = [ a b c d ] P=\begin{bmatrix} a&b \\ c&d \end{bmatrix} P=[acbd]。即基向量 i ′ , j ′ \mathbf i',\mathbf j' i,j 在 Grant 的坐标系下的坐标表示为
p 1 = [ a c ] , p 2 = [ b d ] \mathbf p_1=\begin{bmatrix} a \\ c \end{bmatrix},\quad \mathbf p_2=\begin{bmatrix} b \\ d \end{bmatrix} p1=[ac],p2=[bd]
因此, Jennifer 的基向量间的内积
⟨ i ′ , i ′ ⟩ = p 1 T A p 1 ⟨ i ′ , j ′ ⟩ = p 1 T A p 2 ⟨ j ′ , i ′ ⟩ = p 2 T A p 1 ⟨ j ′ , j ′ ⟩ = p 2 T A p 2 \lang\mathbf i',\mathbf i'\rang=\mathbf p_1^TA\mathbf p_1\\ \lang\mathbf i',\mathbf j'\rang=\mathbf p_1^TA\mathbf p_2 \\ \lang\mathbf j',\mathbf i'\rang=\mathbf p_2^TA\mathbf p_1 \\ \lang\mathbf j',\mathbf j'\rang=\mathbf p_2^TA\mathbf p_2 i,i=p1TAp1i,j=p1TAp2j,i=p2TAp1j,j=p2TAp2
于是,Jennifer坐标系的度量矩阵
B = [ p 1 T A p 1 p 1 T A p 2 p 2 T A p 1 p 2 T A p 2 ] = [ p 1 T p 2 T ] A [ p 1 p 2 ] = P T A P B=\begin{bmatrix} \mathbf p_1^TA\mathbf p_1&\mathbf p_1^TA\mathbf p_2 \\ \mathbf p_2^TA\mathbf p_1&\mathbf p_2^TA\mathbf p_2 \end{bmatrix}= \begin{bmatrix} \mathbf p_1^T \\ \mathbf p_2^T \end{bmatrix}A\begin{bmatrix} \mathbf p_1 & \mathbf p_2 \end{bmatrix} =P^TAP B=[p1TAp1p2TAp1p1TAp2p2TAp2]=[p1Tp2T]A[p1p2]=PTAP
由此可知,合同矩阵刻画了两度量矩阵间的关系

当然,也可通过两个向量的内积在不同的坐标系中的计算公式获得两个度量矩阵间的关系。由过渡矩阵知道,同一个向量从 Jennifer 的坐标到 Grant 的坐标变换公式为
y = P x \mathbf y=P\mathbf x y=Px
在 Jennifer 的坐标系中,两向量 u , v \mathbf u,\mathbf v u,v 的坐标为 x 1 , x 2 \mathbf x_1,\mathbf x_2 x1,x2 ,度量矩阵为 B B B 。内积计算公式
⟨ u , v ⟩ = x 1 T B x 2 \lang\mathbf u,\mathbf v\rang=\mathbf x_1^TB\mathbf x_2 u,v=x1TBx2
在 Grant 的坐标系中,两向量 u , v \mathbf u,\mathbf v u,v 的的坐标为 y 1 , y 2 \mathbf y_1,\mathbf y_2 y1,y2,度量矩阵为 A A A 。内积计算公式
⟨ u , v ⟩ = y 1 T A y 2 = ( P x 1 ) T A ( P x 2 ) = x 1 T ( P T A P ) x 2 \lang\mathbf u,\mathbf v\rang=\mathbf y_1^TA\mathbf y_2 =(P\mathbf x_1)^TA(P\mathbf x_2)=\mathbf x_1^T(P^TAP)\mathbf x_2 u,v=y1TAy2=(Px1)TA(Px2)=x1T(PTAP)x2
于是,我们得到了两坐标系中度量矩阵的关系
B = P T A P B=P^TAP B=PTAP

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/132681.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

下载CentOS ISO镜像 (一)

总目录 https://preparedata.blog.csdn.net/article/details/132877836 文章目录 总目录一、下载CentOS 镜像 一、下载CentOS 镜像 官网下载&#xff1a;https://www.centos.org/download/ Centos Linux 和 CentOS Stream 的区别&#xff1a;https://www.centos.org/cl-vs-cs…

AtCoder Beginner Contest 313 C 一个序列同时加一个数和减一个数,直到最大和最小之间相差最大为1(结论可记住)

AtCoder Beginner Contest 313 C 做题链接&#xff1a;AtCoder Beginner Contest 313 问题陈述 给你一个整数序列 A(A1​,A2​,…,AN​)。你可以执行以下操作任意次数&#xff08;可能为零&#xff09;。 选择带有 1≤i,j≤N的整数 i和 j。将Ai​减少 1&#xff0c;将Aj​增…

图扑可视化图表组件之股票数据分析应用

股市是市场经济的必然产物&#xff0c;在一个国家的金融领域之中有着举足轻重的地位。在过去&#xff0c;人们对于市场走势的把握主要依赖于经验和直觉&#xff0c;往往容易受到主观因素的影响&#xff0c;导致决策上出现偏差。如今&#xff0c;通过数据可视化呈现&#xff0c;…

【C++】多态

目录 1. 多态的概念1.1 概念 2. 多态的定义及实现2.1 多态的构成条件2.2 虚函数2.3 虚函数的重写2.3.1 重写的一些特殊情况 2.4 final和override2.5 重载、覆盖(重写)、隐藏(重定义)的对比 3. 抽象类3.1 概念3.2 实现继承与接口继承 4. 多态的原理4.1 虚函数表4.2 多态的原理4.…

入门人工智能 ——自然语言处理介绍,并使用 Python 进行文本情感分析(5)

入门人工智能 ——自然语言处理介绍&#xff0c;并使用 Python 进行文本情感分析&#xff08;5&#xff09;&#xff09; 入门人工智能 ——自然语言处理介绍&#xff0c;并使用 Python 进行文本情感分析介绍自然语言处理的挑战NLP的基本任务NLP的基本技术NLP的应用领域 使用 P…

《银河麒麟高级服务器操作系统V10》使用

一言而论&#xff1a;讲了麒麟服务器V10的基本使用&#xff0c;包括终端、VNC 文章目录 前言基本架构环境硬件环境软件环境 麒麟安装步骤1.在宿主机上安装好VM&#xff0c;并且激活2.使用VM创建虚拟机3.启动虚拟机 终端常用点VNC的使用麒麟上安装VNC服务器Windows上安装VNC客户…

自动化测试(五):自动化测试框架的搭建和基于yaml热加载的测试用例的设计

该部分是对自动化测试专栏前四篇的一个补充&#xff0c;本次参考以下文章实现一个完整的谷歌翻译接口自动化测试:   [1]【python小脚本】Yaml配置文件动态加载   [2]【python做接口测试的学习记录day8——pytest自动化测试框架之热加载和断言封装】 目标&#xff1a;框架封…

在visual studio里安装Python并创建python工程

在2009年&#xff0c;云计算开始发力&#xff0c;Python、R、Go这些天然处理批量计算的语言也迅猛发展。微软在2010年&#xff0c;把Python当成一个语言包插件&#xff0c;集成到了visual studio 2010里。在"云优先&#xff0c;移动优先"的战略下&#xff0c;于2015年…

什么是Jmeter?Jmeter使用的原理步骤是什么?

1.1 什么是 JMeter Apache JMeter 是 Apache 组织开发的基于 Java 的压力测试工具。用于对软件做压力测试&#xff0c;它最初被设计用于 Web 应用测试&#xff0c;但后来扩展到其他测试领域。 它可以用于测试静态和动态资源&#xff0c;例如静态文件、Java 小服务程序、CGI 脚…

记录一个iOS使用陀螺仪3d效果的抖动问题

使用陀螺仪的时候&#xff0c;遇到一个问题&#xff0c;就是在拖动scrollView滚动的时候&#xff0c;3d效果的图片会抖动 实现3d效果的代码 - (void)updateWithGravityX:(double)gravityXgravityY:(double)gravityYgravityZ:(double)gravityZ {//因为在斜向上45度角的时候&am…

【win10】怎么删除休眠文件

电脑c盘天天爆红&#xff0c;每天可用空间都变少&#xff0c;或者电脑晚上不关机&#xff0c;只锁屏后息屏&#xff0c;第二天发现电脑关机了&#xff0c;可能就是休眠功能惹得鬼。 以下是关闭休眠功能步骤&#xff1a;   1、这个隐藏的系统文件hiberfil.sys&#xff0c;体积…

浅谈C++|STL之算法函数篇

一.遍历常用算法 1.1for_each 在 C 中&#xff0c;for_each 是一个算法函数&#xff0c;位于 <algorithm> 头文件中。它接受一个范围&#xff08;容器或迭代器对&#xff09;以及一个函数对象&#xff08;函数指针、函数、lambda 表达式等&#xff09;&#xff0c;用于…

LiveNVR监控流媒体Onvif/RTSP功能-支持海康摄像头海康NVR通过EHOME协议ISUP协议接入分发视频流或是转GB28181

LiveNVR支持海康NVR摄像头通EHOME接入ISUP接入LiveNVR分发视频流或是转GB28181 1、海康 ISUP 接入配置2、海康设备接入2.1、海康EHOME接入配置示例2.2、海康ISUP接入配置示例 3、通道配置3.1、直播流接入类型 海康ISUP3.2、海康 ISUP 设备ID3.3、启用保存3.4、接入成功 4、相关…

ARMv8架构简介

ARMv8-A架构和处理器 ARMv8-A架构 ARMv8‑A 架构是针对应用程序配置文件的最新一代 ARM 架构。 ARMv8 这个名称用于描述整体架构,现在包括 32 位执行状态和 64 位执行状态。它引入了使用 64 位宽寄存器执行的能力,同时保持与现有 ARMv7 软件的向后兼容性。 ARMv8‑A 架构引…

如何获取美团的热门商品和服务

导语 美团是中国最大的生活服务平台之一&#xff0c;提供了各种各样的商品和服务&#xff0c;如美食、酒店、旅游、电影、娱乐等。如果你想了解美团的热门商品和服务&#xff0c;你可以使用爬虫技术来获取它们。本文将介绍如何使用Python和BeautifulSoup库来编写一个简单的爬虫…

SpringBoot运行原理

目录 SpringBootApplication ComponentScan SpringBootConfiguration EnableAutoConfiguration 结论 SpringbootApplication&#xff08;主入口&#xff09; SpringBootApplication public class SpringbootConfigApplication {public static void main(String[] args) {…

机器学习 day33(误差分析、添加数据)

误差分析 我们可以手动查看分类错误的子集样本&#xff08;通常为100个&#xff09;&#xff0c;并统计他们的错误类型在所有错误类型中&#xff0c;选择一种或几种最常见的错误&#xff0c;进行改进。这可以最高效的改进你的模型误差分析的一个限制是&#xff1a;它只能很好…

CRC(循环冗余校验码的校验方法)

5个关键点&#xff1a; 1.信息码&#xff1a;即给出要校验的二进制码 2.生成多项式&#xff1a;一般多项式会给&#xff0c;从最高位的指数位数就可以得到有几个校验码&#xff1b;如果没给多项式&#xff0c;肯定会给个多项式二进制码&#xff0c;根据它来推就行&#xff08;…

【深度学习】 Python 和 NumPy 系列教程(十六):Matplotlib详解:2、3d绘图类型(2)3D散点图(3D Scatter Plot)

目录 一、前言 二、实验环境 三、Matplotlib详解 1、2d绘图类型 2、3d绘图类型 0. 设置中文字体 1. 线框图&#xff08;Wireframe Plot&#xff09; 2. 3D散点图&#xff08;3D Scatter Plot&#xff09; 一、前言 Python是一种高级编程语言&#xff0c;由Guido van Ross…

【Java基础】- RMI原理和使用详解

【Java基础】- RMI原理和使用详解 文章目录 【Java基础】- RMI原理和使用详解一、什么RMI二、RMI原理2.1 工作原理图2.2 工作原理 三、RMI远程调用步骤3.1 RMI远程调用运行流程图3.2 RMI 远程调用步骤 四、JAVA RMI简单实现4.1 如何实现一个RMI程序4.2 JAVA实现RMI程序 一、什么…