线性代数的本质(一)——向量空间

文章目录

  • 向量空间
    • 向量及其性质
    • 基与维数
    • 向量的坐标运算

《线性代数的本质》 - 3blue1brown
高中数学A版选修4-2 矩阵与变换
《线性代数及其应用》(第五版)
《高等代数简明教程》- 蓝以中

向量空间

In the beginning Grant created the space. And Grant said, Let there be vector: and there was vector.

向量及其性质

三维几何空间中的一个有向线段称为向量(vector)。本文统一用 a , b , c , k , λ a,b,c,k,\lambda a,b,c,k,λ 表示标量,小写黑体字母 u , v , w , a , b , x \mathbf u,\mathbf v,\mathbf w,\mathbf a,\mathbf b,\mathbf x u,v,w,a,b,x 表示向量。

向量通常定义两种运算:加法和数乘。加法遵循三角形法则(平行四边形法则),数乘被称为缩放(scaling)。运算法则如下图

请添加图片描述

性质:根据向量的几何性质可证明向量的加法和数乘满足以下八条性质:

  1. 加法交换律: v + w = w + v \mathbf v+\mathbf w=\mathbf w+\mathbf v v+w=w+v
  2. 加法结合律: u + ( v + w ) = ( u + v ) + w \mathbf u+(\mathbf v+\mathbf w)=(\mathbf u+\mathbf v)+\mathbf w u+(v+w)=(u+v)+w
  3. 加法单位元: ∃ 0 ∈ V , 0 + v = v \exists 0\in V,\ 0+\mathbf v=\mathbf v ∃0V, 0+v=v
  4. 加法逆元: ∃ ( − v ) ∈ V , v + ( − v ) = 0 \exists (-\mathbf v)\in V,\ \mathbf v+(-\mathbf v)=0 (v)V, v+(v)=0
  5. 数乘结合律: a ( b v ) = ( a b ) v a(b\mathbf v)=(ab)\mathbf v a(bv)=(ab)v
  6. 数乘分配律: a ( v + w ) = a v + a w a(\mathbf v+\mathbf w)=a\mathbf v+a\mathbf w a(v+w)=av+aw
  7. 数乘分配律: ( a + b ) v = a v + b v (a+b)\mathbf v=a\mathbf v+b\mathbf v (a+b)v=av+bv
  8. 数乘单位元: ∃ 1 ∈ F , 1 v = v \exists 1\in\mathbb F,\ 1\mathbf v=\mathbf v ∃1F, 1v=v

向量空间是三维几何空间向高维空间的推广。线性代数中,每个向量都以坐标原点为起点,那么任何一个向量就由其终点唯一确定。从而,向量和空间中的点一一对应。因此,空间也可以看成由所有向量组成的集合,并且集合中的元素可以进行加法和数乘运算。于是,便有了向量空间的抽象定义。

向量空间: 设 V V V n n n 维向量的非空集合 F \mathbb F F 是一个数域,若 V V V 对于向量的加法和数乘两种运算封闭,那么称集合 V V V 为数域 F F F 上的向量空间(vector space)。所谓封闭是指

  1. ∀ v , w ∈ V , v + w ∈ V \forall\mathbf v,\mathbf w\in V,\ \mathbf v+\mathbf w\in V v,wV, v+wV
  2. ∀ v ∈ V , c ∈ F , c v ∈ V \forall\mathbf v\in V, c\in F,\ c\mathbf v\in V vV,cF, cvV

线性代数中的数域通常取全体实数,即 F = R \mathbb F=\R F=R

例如: n n n维向量的全体生成实数域上的向量空间

R n = { x = ( x 1 , x 2 , ⋯ , x n ) ∣ x 1 , x 2 , ⋯ , x n ∈ R } \R^n=\{\mathbf x=(x_1,x_2,\cdots,x_n)\mid x_1,x_2,\cdots,x_n\in\R\} Rn={x=(x1,x2,,xn)x1,x2,,xnR}

子空间:设 U U U 是向量空间 V V V 的一个非空子集,如果 U U U中的线性运算封闭,则 U U U 也是向量空间,称为 V V V子空间

基与维数

仿照解析几何的基本方法,建立一个坐标系,实现空间内的点与有序实数对一一对应,从而空间内的向量与有序实数对也一一对应,这样就可以用代数方法来研究向量的性质。

为方便建立空间的坐标系,先定义几个概念。

定义:取向量空间 V V V 内一个向量组 a 1 , a 2 , ⋯ , a r \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_r a1,a2,,ar

  1. 向量 x 1 a 1 + x 2 a 2 + ⋯ + x r a r x_1\mathbf a_1+x_2\mathbf a_2+\cdots+x_r\mathbf a_r x1a1+x2a2++xrar 称为向量组的一个线性组合(linear combination)
  2. 向量组的所有线性组合构成的向量集称为由该向量组张成的空间,记作
    span { a 1 , ⋯ , a n } = { x 1 a 1 + ⋯ + x n a n ∣ x 1 , ⋯ , x n ∈ R } \text{span}\{\mathbf a_1,\cdots,\mathbf a_n\}=\{x_1\mathbf a_1+\cdots+x_n\mathbf a_n\mid x_1,\cdots,x_n\in\R\} span{a1,,an}={x1a1++xnanx1,,xnR}
    如下图,若 u , v ∈ R 3 \mathbf u,\mathbf v\in\R^3 u,vR3 不共线,则 span { u , v } \text{span}\{\mathbf u,\mathbf v\} span{u,v} R 3 \R^3 R3中包含 u , v \mathbf u,\mathbf v u,v 和原点的平面,图示

请添加图片描述3. 当且仅当系数 x 1 = x 2 = ⋯ = x r = 0 x_1=x_2=\cdots=x_r=0 x1=x2==xr=0 时,线性组合为零
x 1 a 1 + x 2 a 2 + ⋯ + x r a r = 0 x_1\mathbf a_1+x_2\mathbf a_2+\cdots+x_r\mathbf a_r=0 x1a1+x2a2++xrar=0
则称向量组线性无关(linearly independence)。反之,如果存在不全为零的数使上式成立,则称向量组线性相关(linearly dependence)。
请添加图片描述

定理:若向量 v \mathbf v v 可由线性无关的向量组 a 1 , a 2 , ⋯ , a r \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_r a1,a2,,ar 线性表示,则表示系数是唯一的。

证明:设向量 v \mathbf v v 有两组表示系数
b = k 1 a 1 + k 2 a 2 + ⋯ + k r a r b = l 1 a 1 + l 2 a 2 + ⋯ + l r a r \mathbf b=k_1\mathbf a_1+k_2\mathbf a_2+\cdots+k_r\mathbf a_r \\ \mathbf b=l_1\mathbf a_1+l_2\mathbf a_2+\cdots+l_r\mathbf a_r b=k1a1+k2a2++krarb=l1a1+l2a2++lrar
则有
( k 1 − l 1 ) a 1 + ( k 1 − l 2 ) a 2 + ⋯ + ( k 1 − l r ) a r = 0 (k_1-l_1)\mathbf a_1+(k_1-l_2)\mathbf a_2+\cdots+(k_1-l_r)\mathbf a_r=0 (k1l1)a1+(k1l2)a2++(k1lr)ar=0
因为 a 1 , a 2 , ⋯ , a r \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_r a1,a2,,ar 线性无关,故必有
k 1 − l 1 = k 1 − l 1 = ⋯ = k 1 − l 1 = 0 k_1-l_1=k_1-l_1=\cdots=k_1-l_1=0 k1l1=k1l1==k1l1=0
即表示系数是唯一的。

接下来,我们自然想用一组线性无关的向量来张成整个向量空间。

向量空间的基:张成向量空间 V V V的一个线性无关的向量集合称为该空间的一组(basis)。基向量组所含向量的个数,称为向量空间 V V V维数(dimension),记为 dim ⁡ V \dim V dimV

可以证明,向量空间的任意一组基的向量个数是相等的。
单由零向量组成的向量空间 { 0 } \{0\} {0}称为零空间。零空间的维数定义为零。

基定理 n n n 维向量空间的任意 n n n 个线性无关的向量构成空间的一组基。

向量的坐标运算

向量空间选定了基向量后,空间中全体向量的集合与全体有序实数组的集合之间就建立了一一 对应的关系。

坐标:设向量组 a 1 , a 2 , ⋯ , a n \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_n a1,a2,,an 是线性空间 V V V 的一组基,则空间内任一向量 v ∈ V \mathbf v\in V vV 都可表示为基向量的唯一线性组合
v = x 1 a 1 + x 2 a 2 + ⋯ + x n a n \mathbf v=x_1\mathbf a_1+x_2\mathbf a_2+\cdots+x_n\mathbf a_n v=x1a1+x2a2++xnan
有序数组 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,,xn 称为向量 v \mathbf v v 在基 a 1 , a 2 , ⋯ , a n \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_n a1,a2,,an 下的坐标,一般记作
[ x 1 x 2 ⋮ x n ] or ( x 1 , x 2 , ⋯ , x n ) \begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}\quad \text{or}\quad (x_1,x_2,\cdots,x_n) x1x2xn or(x1,x2,,xn)
类似于三维几何空间,由 n n n个有序数构成的向量称为 n n n维向量。

请添加图片描述

例:设 v 1 = [ 3 6 2 ] , v 2 = [ − 1 0 1 ] , x = [ 3 12 7 ] \mathbf v_1=\begin{bmatrix}3\\6\\2\end{bmatrix},\mathbf v_2=\begin{bmatrix}-1\\0\\1\end{bmatrix},\mathbf x=\begin{bmatrix}3\\12\\7\end{bmatrix} v1= 362 ,v2= 101 ,x= 3127 。判断 x \mathbf x x 是否在 H = span  { v 1 , v 2 } H=\text{span }\{\mathbf v_1,\mathbf v_2\} H=span {v1,v2} 中,如果是,求 x \mathbf x x 相对于基向量 B = { v 1 , v 2 } B=\{\mathbf v_1,\mathbf v_2\} B={v1,v2} 的坐标。

解:如果 x \mathbf x x H = span  { v 1 , v 2 } H=\text{span }\{\mathbf v_1,\mathbf v_2\} H=span {v1,v2} 中,则下列方程是有解的
c 1 [ 3 6 2 ] + c 2 [ − 1 0 1 ] = [ 3 12 7 ] c_1\begin{bmatrix}3\\6\\2\end{bmatrix}+c_2\begin{bmatrix}-1\\0\\1\end{bmatrix}=\begin{bmatrix}3\\12\\7\end{bmatrix} c1 362 +c2 101 = 3127
如果数 c 1 , c 2 c_1,c_2 c1,c2存在,则它们是 x \mathbf x x 相对于 B B B 的坐标。由初等行变换得
[ 3 − 1 3 6 0 12 2 1 7 ] → [ 1 0 2 0 1 3 0 0 0 ] \begin{bmatrix}\begin{array}{cc:c} 3&-1&3\\6&0&12\\2&1&7 \end{array}\end{bmatrix}\to \begin{bmatrix}\begin{array}{cc:c} 1&0&2\\0&1&3\\0&0&0 \end{array}\end{bmatrix} 3621013127 100010230
于是, x \mathbf x x 相对于 v 1 , v 2 \mathbf v_1,\mathbf v_2 v1,v2 的坐标
v B = [ 3 2 ] \mathbf v_B=\begin{bmatrix}3\\2\end{bmatrix} vB=[32]

有时为了区分坐标的基向量,向量 v \mathbf v v 在基 B = { b 1 , b 2 , ⋯ , b n } B=\{\mathbf b_1,\mathbf b_2,\cdots,\mathbf b_n\} B={b1,b2,,bn} 下的坐标,记作 v B \mathbf v_B vB

请添加图片描述

建立了坐标之后, V V V中抽象的向量 v \mathbf v v R n \R^n Rn中具体的数组 ( x 1 , x 2 , ⋯ , x n ) T (x_1,x_2,\cdots,x_n)^T (x1,x2,,xn)T 实现了一一对应,并且向量的线性运算也可以表示为坐标的线性运算。

v , w ∈ V \mathbf v,\mathbf w\in V v,wV,有
v = v 1 a 1 + v 2 a 2 + ⋯ + v n a n w = w 1 a 1 + w 2 a 2 + ⋯ + w n a n \mathbf v=v_1\mathbf a_1+v_2\mathbf a_2+\cdots+v_n\mathbf a_n\\ \mathbf w=w_1\mathbf a_1+w_2\mathbf a_2+\cdots+w_n\mathbf a_n v=v1a1+v2a2++vnanw=w1a1+w2a2++wnan

向量加法运算
v + w = ( v 1 + w 1 ) a 1 + ( v 2 + w 2 ) a 2 + ⋯ + ( v n + w n ) a n \mathbf v+\mathbf w=(v_1+w_1)\mathbf a_1+(v_2+w_2)\mathbf a_2+\cdots+(v_n+w_n)\mathbf a_n v+w=(v1+w1)a1+(v2+w2)a2++(vn+wn)an
即对应的坐标运算为
[ v 1 v 2 ⋮ v n ] + [ w 1 w 2 ⋮ w n ] = [ v 1 + w 1 v 2 + w 2 ⋮ v n + w n ] \begin{bmatrix}v_1\\ v_2\\ \vdots \\ v_n\end{bmatrix}+ \begin{bmatrix}w_1\\ w_2\\ \vdots \\ w_n\end{bmatrix}= \begin{bmatrix}v_1+w_1\\ v_2+w_2\\ \vdots \\ v_n+w_n\end{bmatrix} v1v2vn + w1w2wn = v1+w1v2+w2vn+wn

向量数乘运算
c v = ( c v 1 ) a 1 + ( c v 2 ) a 2 + ⋯ + ( c v n ) a n c\mathbf v=(cv_1)\mathbf a_1+(cv_2)\mathbf a_2+\cdots+(cv_n)\mathbf a_n cv=(cv1)a1+(cv2)a2++(cvn)an
即对应的坐标运算为
c [ v 1 v 2 ⋮ v n ] = [ c v 1 c v 2 ⋮ c v n ] c\begin{bmatrix}v_1\\ v_2\\ \vdots \\ v_n\end{bmatrix}= \begin{bmatrix}cv_1\\ cv_2\\ \vdots \\ cv_n\end{bmatrix} c v1v2vn = cv1cv2cvn

向量的坐标取值依托于坐标系的基向量。选取的基向量不同,其所对应的坐标值就不同。当然,基向量自身的坐标总是:

e 1 = [ 1 0 ⋮ 0 ] , e 2 = [ 0 1 ⋮ 0 ] , ⋯ , e n = [ 0 0 ⋮ 1 ] , \mathbf e_1=\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix},\quad \mathbf e_2=\begin{bmatrix}0\\1\\\vdots\\0\end{bmatrix},\quad \cdots,\quad \mathbf e_n=\begin{bmatrix}0\\0\\\vdots\\1\end{bmatrix},\quad e1= 100 ,e2= 010 ,,en= 001 ,
这种坐标形式通常称为标准向量组(或单位坐标向量组)。

总之,在 n n n维向量空间 V n V_n Vn 中任取一组基,则 V n V_n Vn 中的向量与 R n \R^n Rn 中的数组之间就有一一对应的关系,且这个对应关系保持线性组合(线性运算)的一一对应。接下来我们将默认使用标准坐标系:坐标原点为 O O O,基向量组为 e 1 , e 2 , ⋯ , e n \mathbf e_1,\mathbf e_2,\cdots,\mathbf e_n e1,e2,,en后续将对向量实体和坐标不做区分

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/132963.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Rn视图生成图片并保存到相册

该功能依赖两个组件 完整代码 yarn add react-native-view-shot // 视图生成图片 yarn add expo-media-library // 保存图片import { useState, useRef } from react import ViewShot from "react-native-view-shot" import { View, Text, Button, Image, StyleSh…

pdf文档怎么压缩小一点?文件方法在这里

在日常工作和生活中,我们经常会遇到需要上传或者发送pdf文档的情况。但是,有时候pdf文档的大小超出了限制,需要我们对其进行压缩。那么,如何将pdf文档压缩得更小一点呢?下面,我将介绍三种方法,让…

堆与栈的区别

OVERVIEW 栈与堆的区别一、程序内存分区中的堆与栈1.栈2.堆3.堆&栈 二、数据结构中的堆与栈1.栈2.堆 三、堆的深入1.堆插入2.堆删除:3.堆建立:4.堆排序:5.堆实现优先队列:6.堆与栈的相关练习 栈与堆的区别 自整理,…

【Cocos Creator 3.5实现赛车游戏】10.实现汽车节点的运动逻辑

转载知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 项目地址:赛车小游戏-基于Cocos Creator 3.5版本实现: 课程的源码,基于Cocos Creator 3.5版本实现 上一节的学习后,您已经完成了对汽车节点的控制逻…

【自动驾驶】PETR 环境安装与测试

1.环境安装 该工程依赖MMCV, MMDetection, MMDetection3d,MMSegmentation Install MMCV pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.htmlexamples: pip install…

小程序实现一个 倒计时组件

小程序实现一个 倒计时组件 需求背景 要做一个倒计时,可能是天级别,也可能是日级别,时级别,而且每个有效订单都要用,就做成组件了 效果图 需求分析 需要一个未来的时间戳,或者在服务度直接下发一个未来…

【视觉SLAM入门】7.3.后端优化 基于KF/EKF和基于BA图优化的后端,推导及举例分析

"时间倾诉我的故事" 1. 理论推导2. 主流解法3. 用EKF估计状态3.1. 基于EKF代表解法的感悟 4. 用BA法估计状态4.1 构建最小二乘问题4.2 求解BA推导4.3 H的稀疏结构4.4 根据H稀疏性求解4.5 鲁棒核函数4.6 编程注意 5.总结 引入: 前端里程计能给出一个短时间…

MySQL优化第二篇

MySQL优化第二篇 性能分析小表驱动大表慢查询日志日志分析工具mysqldumpslow Show Profile进行SQL分析(重中之重) 七种JOIN 1、inner join :可以简写为join,表示的是交集,也就是两张表的共同数据 sql语句&#xff1a…

用动态ip登录账号的风险高不高?

使用动态ip登录账号在一定程度上提供了额外的安全保障和匿名性,但与此同时也存在一些风险和风控挑战。本文将解密使用动态ip登录账号的真相,明确安全与风险的并存之道。 1、增强隐私保护: 使用动态ip登录账号可以隐藏您的真实IP地址&#xff…

21 Spring Boot整合Redis

目录 一、Redis简介 二、创建springboot整合redis工程 三、添加依赖 四、配置Yml 五、创建Redis配置类 六、创建Redis工具类,封装Redis的api 七、操作Redis 八、验证 一、Redis简介 简单来说 Redis 就是一个使用 C 语言开发的数据库,不过与传统…

无涯教程-JavaScript - OR函数

描述 如果任何参数为TRUE,则OR函数返回TRUE;如果所有参数为FALSE,则返回FALSE。 语法 OR (logical1, [logical2], ...) 争论 Argument描述Required/Optionallogical1 您要测试的1到255个条件可以是TRUE或FALSE。 您要测试的1到255个条件可以是TRUE或FALSE。 Req…

JDK API文档地址(中文和英文)

JDK1.6 JDK 1.6 中文手册 JDK1.8 Java 8 中文版 - 在线API手册 - 码工具 Java 官方文档 |官方教程|Java 官方文档 API中文手册|Java 官方文档参考文档_w3cschool 网上还有很多百度网盘中也有 JDK17 https://doc.qzxdp.cn/jdk/17/zh/api/index.html 英文文档 所有版本 …

Unity 性能优化之Shader分析处理函数ShaderUtil.HasProceduralInstancing: 深入解析与实用案例

Unity 性能优化之Shader分析处理函数ShaderUtil.HasProceduralInstancing: 深入解析与实用案例 点击封面跳转到Unity国际版下载页面 简介 在Unity中,性能优化是游戏开发过程中非常重要的一环。其中,Shader的优化对于游戏的性能提升起着至关重要的作用。…

学习视觉SLAM需要会些什么?

前言 SLAM是现阶段很多研究生的研究方向,我也是作为一个即将步入视觉SLAM的研究生,网上对于SLAM的介绍很多,但很少有人完整系统的告诉你学习视觉SLAM该有那些基础,那么此贴将告诉你学习SLAM你要有那些方面的基础。 文章目录 前言…

Java 华为真题-选修课

需求: 现有两门选修课,每门选修课都有一部分学生选修,每个学生都有选修课的成绩,需要你找出同时选修了两门选修课的学生,先按照班级进行划分,班级编号小的先输出,每个班级按照两门选修课成绩和的…

计算机网络TCP篇之流量控制

计算机网络TCP篇之流量控制 今天谈一谈我对于tcp流量控制的看法 在网络拓扑中如果发送方节点的发送速率大于接受方节点的接受速率,数据会不断在接受方的缓冲区累积,直到接受方的缓冲区满的时候,发送方继续发送数据,这时候接受方无…

文件上传漏洞~操作手册

目录 上传文件一般过滤方式 客服端校验 服务端校验 黑白名单机制 常规文件上传漏洞绕过 客户端绕过 1.游览器禁用JavaScript 2.正常burp suite抓包改包 服务端绕过 1.Content-Type绕过 2.黑名单绕过 1)命名规则绕过 2)大小写绕过 3&#x…

怎么用excel管理固定资产

在当今的数字时代,我们已经习惯了使用各种电子工具来提高我们的生产力。其中,Excel无疑是一个强大的工具,它不仅可以帮助我们处理数据,还可以用来进行复杂的计算和分析。然而,你可能不知道的是,Excel也可以…

优思学院|什么是精益项目管理?

正确地使用精益思想和技术是可以减少项目中的浪费、提高客户满意度,并提高项目的利润率。 在现实世界中,项目经理的工作充满了挑战。他们不仅需要专注于产品和团队,还必须确保客户的满意度。同时,他们还必须与矩阵组织打交道&…

异步FIFO设计

1 FIFO简介 FIFO的本质是RAM,具有先进先出的特性。 FIFO的基本使用原则:空时不能读,满时不能写 FIFO的两个重要参数:宽度和深度 FIFO的两种类型: 同步FIFO:读写时钟相同,通常用来做数据缓存…