训练自己的ChatGPT 语言模型(一).md

0x00 Background

为什么研究这个?
ChatGPT在国内外都受到了广泛关注,很多高校、研究机构和企业都计划推出类似的模型。然而,ChatGPT并没有开源,且复现难度非常大,即使到现在,没有任何单位或企业能够完全复现GPT3的能力。最近,OpenAI发布了GPT4模型,它支持图文多模态,相较于ChatGPT,其能力大幅提升,似乎预示着第四次工业革命以通用人工智能为主导的到来。

无论是国内还是国外,与OpenAI的差距越来越大。大家都在竭力追赶,在这场技术革新中竞争激烈,目前许多大型企业都采取了闭源的研发策略。ChatGPT和GPT4的细节非常少,也不像之前发布论文时那么详细。OpenAI的商业化时代已经到来。当然,也有一些组织或个人在开源平台上进行了探索。本文将对这些探索进行总结,并将持续跟踪和更新开源平台的情况。

0x01

一种平价的chatgpt实现方案

下面推荐一下我最近看的几个比较火的大模型

image-20230507165821987

ChatGLM

https://github.com/THUDM/ChatGLM-6B

ChatGLM是一个对话模型,由清华技术成果转化的公司智谱AI开源的GLM系列推出。该模型支持中英两个语种,并开源了其62亿参数量的模型。它不仅继承了之前GLM模型的优势,还在模型架构上进行了优化,从而使得它的部署和应用门槛更低,可以在消费级显卡上实现大模型的推理应用。具体的技术细节可以参考其Github页面。

从技术路线上看,ChatGLM实现了ChatGPT的强化学习人类对齐策略,使得生成效果更加贴近人类的价值。目前它的能力包括自我认知、提纲写作、文案写作、邮件写作助手、信息抽取、角色扮演、评论比较、旅游建议等。此外,该模型还开发了一个正在内测的1300亿的超大模型,是目前开源平台中参数规模最大的对话大模型之一。

LLAMA

LLaMA模型是一种基于自然语言处理技术的大型语言模型。该模型的名称是“Language Model for the Martian”(火星人的语言模型)的缩写。该模型由Meta(Facebook旗下的人工智能研究机构)发布,是一个由超过700亿个参数组成的预训练模型。

https://github.com/facebookresearch/llama

LLaMA模型在自然语言生成、对话生成、文本摘要、数学定理证明和蛋白质结构预测等任务上表现出色。与其他类似的语言模型相比,LLaMA模型具有更好的通用性和适用性,支持超过20种语言,包括英语、西班牙语、阿拉伯语、俄语和德语等多种语言。此外,LLaMA模型还支持使用不同的字母和符号系统,如拉丁字母、希腊字母、西里尔字母等。

在自然语言生成方面,LLaMA模型可以自动生成包括段落、故事、诗歌和对话等不同类型的文本。在文本摘要方面,LLaMA模型可以根据给定的文章自动生成简短的摘要。在数学定理证明方面,LLaMA模型可以生成相应的证明步骤和解释。在蛋白质结构预测方面,LLaMA模型可以根据蛋白质序列信息预测其三维结构。

LLaMA模型的发布对人工智能领域产生了重大影响,为自然语言处理技术的发展提供了有力支持。此外,LLaMA模型也为其他类似的大型语言模型的开发和应用提供了重要参考。

值得一提的是,LLaMA模型曾在2021年发生泄露事件,导致模型的数据被公开。该事件对人工智能领域产生了巨大的影响,推动了类ChatGPT的开源发展。

Alpaca

由于目前LLama的授权比较有限,只能用作科研,不允许做商用。

Alpaca(全称:Stanford Alpaca)是斯坦福大学发布的一种自然语言处理模型。该模型是基于LLaMA模型微调得出的一种模型。Alpaca的基本思想是让OpenAI的text-davinci-003模型以self-instruct方式生成大量指令样本,然后使用这些样本对LLaMA模型进行微调。

只用了52K的数据集,就训练出来了非常好的效果 https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json

Alpaca的训练过程十分有趣。在训练过程中,研究人员将text-davinci-003模型暴力训练,让它根据自己的判断和指令生成一系列的指令样本,包括对话、文字、代码等。这些指令样本随后被用于微调LLaMA模型,从而提高其在特定任务上的性能。这种自我训练的方式使得Alpaca的微调过程不需要人工干预,大大降低了训练成本和时间。

Alpaca的模型文件目前还未被开源,但其训练数据、生成训练数据的代码和超参数已经在GitHub上公开。由于成本低廉、数据易得等特点,Alpaca的项目在自然语言处理领域受到了广泛的关注和赞誉。

stanford-alpaca

https://github.com/tatsu-lab/stanford_alpaca

alpaca-lora

斯坦福大学发布了另一个重要项目:alpaca-lora。

该项目使用 LoRA 技术重新实现了 Alpaca 的结果,并采用更低成本的方法,仅使用一块 RTX 4090 显卡进行 5 小时的训练,就得到了一个与 Alpaca 相当的模型。而且,该模型可以在树莓派上运行。该项目使用 Hugging Face 的 PEFT 实现了廉价高效的微调。PEFT 是一个支持 LoRA 技术的库,可以使用各种基于 Transformer 的语言模型并使用 LoRA 进行微调,从而在一般的硬件上实现廉价而有效的模型微调。该项目的 GitHub 地址是:https://github.com/tloen/alpaca-lora。

虽然 Alpaca 和 alpaca-lora 取得了较大的提升,但它们都是以英语作为种子任务,缺乏对中文的支持。为了解决这个问题,三位个人开发者从华中师范大学等机构开源了中文语言模型骆驼 (Luotuo)。该模型基于前人的工作,如 alpaca-lora,并可在单个显卡上进行训练和部署。该项目已经发布了两个模型:luotuo-lora-7b-0.1 和 luotuo-lora-7b-0.3,另一个模型也在计划中。该项目的 GitHub 地址是:https://github.com/LC1332/Chinese-alpaca-lora。

Vicuna和Chinese-Vicuna

斯坦福学者与CMU、UC伯克利等合作推出了一个全新模型,即130亿参数的Vicuna(俗称小羊驼、骆马)。这个模型可以通过在ShareGPT收集的用户共享对话上对LLaMA进行微调训练来得到。在测试过程中,使用GPT-4作为评判标准,结果显示Vicuna-13B在超过90%的情况下实现了与ChatGPT和Bard相匹敌的能力,而且仅需300美元就能实现ChatGPT 90%的性能。最近,UC伯克利LMSys org还发布了一个70亿参数的Vicuna,它不仅体积小、效率高、能力强,而且只需两行命令就能在M1/M2芯片的Mac上运行,还能开启GPU加速。这个项目的github开源地址为:https://github.com/lm-sys/FastChat/

另外,还有一个中文版的Vicuna被命名为Chinese-Vicuna,它也已经开源了,github地址为:https://github.com/Facico/Chinese-Vicuna

微调方案

模型微调的问题

这有几个微调的方案的结果对比:

也是

image-20230507153212764

Abstract

Prompt turning通过在frozen language model上仅仅tuning 连续的 prompts可以減少前绪任务的
存储和训练中内存的消耗。然而,之前的工作揭示prompt tuning在正常大小的预训练模型的NLU
任务表现的并不好。本文也发现现有的prompt方法不能处理hard的序列标注问题,显示缺少通用
性。适当的优化prompt tuning可以有效的应用•在不同的模型scale和NLU任务上。文章提出的P-
Tuning V2不是一个新的方法是,是一个优化和改良的Pretix-tuning1版本。
Introduction

Finetune

在Fine-tuning中,我们会将预训练模型中的一部分或全部权重复制到新的任务中,然后使用新任务的数据对这些权重进行微调,使其适应新任务。微调通常需要在新任务上训练一些额外的层,这些层是预训练模型之外的新层,它们的主要作用是对预训练模型的输出进行适当的调整,使其适用于新任务。

现有的fineturjng模式可以获得不错的结果,但是同时也有很大的问题

尤其是在一个大数据的情况下,我们微调其实需要大量的数据才有一个好的效果

需要各种各样的数据,才能调整各种

lora

简单的说就是:
在模型外面在潜入一个层
用小模型去影响大模型

LORA(Layer-wise Relevance Analysis)是一种模型解释方法,用于解释深度神经网络的预测结果。它的基本思想是在模型的每一层之间插入一个解释层,通过计算每个输入特征对每个解释层的重要性来解释模型的预测过程。

具体而言,在LORA中,首先将一个小型的解释模型嵌入到原始模型的每个层之间。这个解释模型通常是一个简化的线性模型或者是一个浅层神经网络。然后,通过计算每个输入特征在解释模型中的权重,来评估该特征对模型预测结果的重要性。这样,就可以通过分析每个解释层的输出来解释原始模型的预测过程。

通过LORA方法,我们可以获得每个特征对模型预测的贡献程度,从而更好地理解模型的决策过程。这对于模型的可解释性和可信度评估非常有帮助。此外,LORA还可以用于模型的调试和改进,通过分析每个解释层的输出,我们可以发现模型中可能存在的问题,并采取相应的措施进行改进。

模型微调的问题

尤其是在一个大数据的情况下,我们微调其实需要大量的数据才有一个好的效果

在模型微调中,一个主要的问题是需要大量的数据才能获得良好的效果。特别是在面对大规模数据时,微调模型需要各种类型的数据来适应不同的任务。这使得微调变得困难和耗时。

另一个问题是微调过程中的过拟合。当微调模型时,可能会出现过拟合的情况,即模型在训练数据上表现良好,但在测试数据上表现较差。这可能是由于微调数据的数量有限,导致模型过度适应微调数据而无法泛化到新的数据。

此外,微调过程中的权衡也是一个挑战。在微调中,需要在保留预训练模型的知识的同时,对新任务进行适当的调整。这需要在保持模型的泛化能力和适应性之间找到平衡点。

综上所述,模型微调面临着数据需求大、过拟合和权衡的问题。解决这些问题需要采用合适的数据增强技术、正则化方法和模型架构设计,以及仔细调整微调过程中的超参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/1330.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

chatgpt4模型介绍

在当今信息爆炸的时代,人们越来越多地依赖计算机和互联网与他人进行交流。然而,传统的计算机交互方式常常显得呆板和不自然,难以满足人们对于智能、自然对话的需求。为了解决这一问题,OpenAI推出了ChatGPT,这是一种能够…

ChatGPT模型采样算法详解

ChatGPT模型采样算法详解 ChatGPT所使用的模型——GPT(Generative Pre-trained Transformer)模型有几个参数,理解它们对文本生成任务至关重要。其中最重要的一组参数是temperature和top_p。二者控制两种不同的采样技术,用于因果…

ChatGPT探索系列之二:学习GPT模型系列的发展历程和原理

文章目录 前言一、GPT的起源GPT系列 二、GPT的原理1. GPT原理:自注意2. GPT原理:位置编码3. GPT原理:Masked Language Modeling4. GPT原理:预训练5. GPT原理:微调6. GPT原理:多任务学习 三、GPT模型的风险与…

一文读懂chatGPT模型原理(无公式)

每天给你送来NLP技术干货! 来自:JioNLP 点击这里进群—>加入NLP交流群 (本文是chatGPT原理介绍,但没有任何数学公式,可以放心食用) 前言 这两天,chatGPT模型真可谓称得上是狂拽酷炫D炸天的存…

LeCun:ChatGPT无法实现通用人工智能,但ALM技术路线可以!

文 | 天于刀刀 ChatGPT 将加速通用人工智能的实现。—— 邱锡鹏 在上周刚刚结束的 2023 全球人工智能开发者先锋大会(GAIDC)上,作者有幸亲身参与大模型技术与应用分论坛,并在现场聆听了来自业界和学界一众大佬的精彩讲座。 在会上…

chatgpt的历史问答记录消失的解决之道

刚刚使用发现我的历史会话记录都没有了,我旁边的一个朋友也没有了。 网上查了一下,很多网友,居然也没有历史记录了。 这是故意而为之,还是误操作删除记录,更有可能是不是装了插件引起的。无意当中发现了一个方法&…

ChatGPT报错解决

背景:登录后无法正常交流,报错内容为: Something went wrong. If this issue persists please contact us through our help center at help.openai.com 如图所示: 解决方法: 1. 不关闭代理的情况下Log out再Log in&a…

chatGPT Access denied访问被拒绝(已解决)

这个网站可以直接进入ai聊天,但是功能只有语言模块,我试用了一下作为文字训练可以使用。ChatGPT Online - AI Chat GPThttps://chatgpt.org/chat 然后是网站尚Access denied 解决办法 首先要使用海外的原生IP进行全局代理,不要使用各大云平…

这20种职业ChatGPT无法取代!

李开发在《AI未来进行式》一书中分析了AI存在明显不足的三大短板,即便到了2042年,AI可能仍然无法完全掌握这些能力。 第一、创造力。AI不具备进行创造、构思以及战略性规划的能力。尽管AI非常擅长针对单一领域的任务进行优化,使目标函数达到最…

聊聊ChatGPT无法取代的7个工作

ChatGPT——全世界都在谈论的非常流行的人工智能工具。自从 2022 年 11 月 30 日推出以来,ChatGPT 就被证明是执行复杂任务并简化它们的一体式工具。无论是通过 UPenn 的沃顿商学院 MBA 考试,撰写常春藤盟校入学论文,还是完成简单的任务&…

OpenAI 宣布部分解除 ChatGPT 无法联网限制,引入插件策略,会带来什么变化?

OpenAI 发布 ChatGPT Plugins (ChatGPT 插件集) 昨天凌晨,OpenAI 发布 ChatGPT Plugins (ChatGPT 插件集),它能将 ChatGPT 连接到第三方应用程序) 这是 AI 的 App Store 时刻,AI 经历了「iPhone」时刻后,如今也有了应用商店。 这…

我破除了 ChatGPT 无法联网的魔咒!

公众号关注 “GitHubDaily” 设为 “星标”,每天带你逛 GitHub! 前阵子我写过一篇文章,介绍了几种无需安装 ChatGPT Plugin,即可让其轻松破除无法联网的魔咒。 最近看到不少同学对此感兴趣,因此我把这几个方案汇总完善…

解决ChatGPT 总是打不开,显示不可用,网站崩溃,聊几句话就报错,plus会员无法升级始终不成功的问题

为什么你的chat gpt总是打不开,显示不可用,网站崩溃,聊几句话就报错,plus会员无法升级始终不成功? 首先第一个问题open ai服务不可用 那么这个问题很显然,你所在的位置不提供chat gpT的服务,解…

ChatGPT - 根据写作进行调整,总结长文并加速学习

文章目录 Prompt Prompt “将以下文本总结为500字或更少。为每个重要点创建部分,并简要总结该点。” [文本]

ACL2023论文写作竟允许使用ChatGPT 了!

文|HFL源|HFL实验室 随着以ChatGPT为代表的生成式AI的火热,近期人工智能领域的顶级会议相继推出相关政策以进一步规范这类工具在科学文献撰写中的使用。ACL 2023程序委员会主席在近期的一篇博客中披露了ACL 2023大会的相关政策。 原文&#x…

首篇ChatGPT辅助写作的论文,已在arXiv发表!

编|LRS源|新智元 虽然ChatGPT写的论文错误太多,但掠夺性期刊应该会接收。(错误尝试!!) ChatGPT以其强大的文本创作能力,直接问鼎地表最强问答模型。 但强大的AI也会带来一些负面影响…

ChatGpt结合Google文档完成自动化写作流程--1

GPT机器人可以通过API连接谷歌文档,让我们进行文字创作和编辑。可以通过它,提供写作思路,创建标题,起草文章介绍和大纲,编写段落,最后总结全文。同时,在一篇文章里,还能帮我们插入图…

使用ChatGPT最新版实现批量写作,打造丰富多彩的聚合文章

随着人工智能的迅猛发展,ChatGPT最新版作为一种自然语言处理模型,可以为我们提供强大的文本生成能力。在这篇文章中,我们将探讨如何利用ChatGPT最新版来实现批量写作,从而打造丰富多彩的聚合文章。 一、ChatGPT最新版简介 Chat…

玩转ChatGPT:论文辅助写作(附Claude测评)

一、写在前面 嘿!嘿!嘿!大家好,今天我们来聊一下使用GPT们进行论文辅助写作。不过,我要先交代一下,GPT的使用门槛比较高,不少童鞋都用不上。所以,我极力推荐一个平替产品——Claude…