pytorch生成CAM热力图-单张图像

利用ImageNet预训练模型生成CAM热力图-单张图像

  • 一、环境搭建
  • 二、主要代码
  • 三、结果展示

代码和图片等资源均来源于哔哩哔哩up主:同济子豪兄
讲解视频:CAM可解释性分析-算法讲解

一、环境搭建

1,安装所需的包

pip install numpy pandas matplotlib requests tqdm opencv-python pillow -i https://pypi.tuna.tsinghua.edu.cn/simple

2,安装 Pytorch

pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113

3,安装 mmcv-full

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10.0/index.html

4,下载中文字体文件(用于显示和打印汉字文字)

wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/SimHei.ttf

5,下载 ImageNet 1000类别信息

wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/meta_data/imagenet_class_index.csv

6,创建 test_img 文件夹,并下载测试图像到该文件夹

import os
os.mkdir('test_img')wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/border-collie.jpg -P test_img
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/cat_dog.jpg -P test_img
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/0818/room_video.mp4 -P test_img

7,下载安装 torchcam

git clone https://github.com/frgfm/torch-cam.git
pip install -e torch-cam/.

二、主要代码

from PIL import Imageimport torch
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)# 导入ImageNet预训练模型
from torchvision.models import resnet18
model = resnet18(pretrained=True).eval().to(device)# 导入自己训练的模型
# model = torch.load('自己训练的模型.pth')
# model = model.eval().to(device)# 可解释性分析方法有:CAM GradCAM GradCAMpp ISCAM LayerCAM SSCAM ScoreCAM SmoothGradCAMpp XGradCAM# 方法一:导入可解释性分析方法SmoothGradCAMpp
# from torchcam.methods import SmoothGradCAMpp 
# cam_extractor = SmoothGradCAMpp(model)# 方法二:导入可解释性分析方法GradCAM
from torchcam.methods import GradCAM
target_layer = model.layer4[-1]    # 选择目标层
cam_extractor = GradCAM(model, target_layer)# 图片预处理
from torchvision import transforms
# 测试集图像预处理-RCTN:缩放、裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])# 图片分类预测
img_path = 'test_img/border-collie.jpg'
img_pil = Image.open(img_path)
input_tensor = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
pred_logits = model(input_tensor)
# topk()方法用于返回输入数据中特定维度上的前k个最大的元素
pred_top1 = torch.topk(pred_logits, 1)
# pred_id 为图片所属分类对应的索引号,分类和索引号存储在imagenet_class_index.csv
pred_id = pred_top1[1].detach().cpu().numpy().squeeze().item()# 生成可解释性分析热力图
activation_map = cam_extractor(pred_id, pred_logits)
activation_map = activation_map[0][0].detach().cpu().numpy()# 可视化
from torchcam.utils import overlay_mask# overlay_mask 用于构建透明的叠加层
# fromarray 实现array到image的转换
result = overlay_mask(img_pil, Image.fromarray(activation_map), alpha=0.7)# 为图片添加中文类别显示# 载入ImageNet 1000 类别中文释义
import pandas as pd
df = pd.read_csv('imagenet_class_index.csv')
idx_to_labels = {}
idx_to_labels_cn = {}
for idx, row in df.iterrows():idx_to_labels[row['ID']] = row['class']idx_to_labels_cn[row['ID']] = row['Chinese']# 显示所有中文类别
# idx_to_labels_cn# 可视化热力图的类别ID,如果为 None,则为置信度最高的预测类别ID
# show_class_id = 231		# 例如 牧羊犬:231 虎猫:281
show_class_id = None# 可视化热力图的类别ID,如果不指定,则为置信度最高的预测类别ID
if show_class_id:show_id = show_class_id
else:show_id = pred_idshow_class_id = pred_id# 是否显示中文类别
Chinese = True
# Chinese = Falsefrom PIL import ImageDraw
# 在图像上写字
draw = ImageDraw.Draw(result)if Chinese:# 在图像上写中文text_pred = 'Pred Class: {}'.format(idx_to_labels_cn[pred_id])text_show = 'Show Class: {}'.format(idx_to_labels_cn[show_class_id])
else:# 在图像上写英文text_pred = 'Pred Class: {}'.format(idx_to_labels[pred_id])text_show = 'Show Class: {}'.format(idx_to_labels[show_class_id])from PIL import ImageFont, ImageDraw
# 导入中文字体,指定字体大小
font = ImageFont.truetype('SimHei.ttf', 30)# 文字坐标,中文字符串,字体,rgba颜色
draw.text((10, 10), text_pred, font=font, fill=(255, 0, 0, 1))
draw.text((10, 50), text_show, font=font, fill=(255, 0, 0, 1))#输出结果图
result

注意:

  1. 可解释性方法的选择有多种,代码中提供了 SmoothGradCAMpp 和 GradCAM 两种方法;
  2. 模型选择也有pytorch预训练模型和自己训练的模型两种,代码中演示了 ImageNet图像分类 模型,图片类别文件为 imagenet_class_index.csv;若为自己的模型则还需要修改 “为图片载入类别的部分代码”

三、结果展示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/133486.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于MediaPipe的人体摔倒检测

1 简介 1.1 研究背景及意义 现如今随着经济等各方面飞速发展,社会安全随之也成为必不可少的话题。而校园安全则是社会安全的重中之重,而在我们的校园中,湿滑的地面、楼梯等位置通常会发生摔倒,尽管有“小心脚下”的告示牌&#xf…

栈与队列经典题目——用队列实现栈

本篇文章讲解栈和队列这一部分知识点的经典题目:用栈实现队列、用队列实现栈。对应的题号分别为:Leetcode.225——用队列实现栈,。 在对两个题目进行解释之前,先回顾以下栈和队列的特点与不同: 栈是一种特殊的线性表…

如何隐藏Selenium特征实现自动化网页采集

Selenium是一个流行的自动化网页测试工具,可以通过模拟用户在Chrome浏览器中的操作来完成网站的测试。然而,有些网站会检测浏览器是否由Selenium驱动,如果是,就会返回错误的结果或拒绝访问。为了避免这种情况,我们需要…

网络安全进阶学习第十六课——业务逻辑漏洞介绍

文章目录 一、什么是业务逻辑二、业务逻辑漏洞的成因三、逻辑漏洞的重要性四、业务逻辑漏洞分类五、业务逻辑漏洞——业务授权安全1、未授权访问2、越权访问1) 平行越权(水平越权是指相同权限的不同用户可以互相访问)2) 垂直越权(垂直越权是指…

蓝桥杯 题库 简单 每日十题 day1

01 空间 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 小蓝准备用 256MB 的内存空间开一个数组,数组的每个元素都是 32 位 二进制整数,如果不考虑程序占用的空间和维护内存需要的辅助空间&#xff…

免费开箱即用微鳄OA办公系统

编者按:本文介绍基于天翎低代码平台实现的微鳄OA办公系统功能,免费开箱即用。支持私有化部署,同时提供天翎开发后台,企业可按需求可灵活调整配置。 OA办公系统可以提高企业的效率、降低成本、增强管理能力和灵活性,同时…

华为云云耀云服务器L实例评测|华为云云耀云服务器L实例开展性能评测

作者简介: 辭七七,目前大二,正在学习C/C,Java,Python等 作者主页: 七七的个人主页 文章收录专栏: 七七的闲谈 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖&#x1f…

element-ui tree组件实现在线增删改

这里要实现一个tree 增删改 <!--oracle巡检项--> <template><div class"oracle_instanceType"><el-row type"flex" align"middle" justify"space-between"><iclass"el-icon-s-fold iBox"click&q…

笔记1.1 计算机网络基本概念

计算机网络是通信技术与计算机技术紧密结合的产物 通信系统模型&#xff1a; 计算机网络是一种通信网络 计算机网络是互连的、自洽的计算机集合。 互连&#xff1a;互联互通 自洽&#xff1a;无主从关系 通过交换网络互连主机 Internet&#xff1a;数以百万计的互连的计算设…

webpack-cl明明已经安装了,但是还是会报未安装

解决办法&#xff1a;对当前项目目录进行安装 npm install webpack webpack-cli --save-dev

腾讯mini项目-【指标监控服务重构】2023-08-06

今日已办 feature/client_traces_profile 修改 consumer 4个阶段的 spankind将 profile 的 span 作为 root span&#xff0c;保持与 venus 的 follows from 的 link feature/profile-otelclient-metric 将 metric 部分使用新分支 push go.opentelemetry.io/otel/propagatio…

记一次在amd架构打包arm64架构的镜像的试错经历

前提 在amd架构打包了一个镜像&#xff0c;放在arm64架构服务器上可以load ,但是run的时候报平台不兼容的问题。 运行如下命令查看发现 架构属于 amd64 如下&#xff1a; docker inspect 镜像ID需要生成一个arm的镜像才能运行。 尝试 首先Dockerfile 的FROM 基础镜像就的是…

I/O多路复用三种实现

一.select 实现 &#xff08;1&#xff09;select流程 基本流程是&#xff1a; 1. 先构造一张有关文件描述符的表; fd_set readfds 2. 清空表 FD_ZERO() 3. 将你关心的文件描述符加入到这…

LeetCode-热题100-笔记-day29

199. 二叉树的右视图https://leetcode.cn/problems/binary-tree-right-side-view/ 给定一个二叉树的 根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 示例 1: 输入: [1,2,3,null,5,null,4] 输出: [1…

OpenGL ES视频特效开发参考Shadertoy参数详解参考Godot文档

今天一个大厂的学员过来问shadertoy上一些参数的问题&#xff0c;因为我之前用过一段时间Godot引擎&#xff0c; 我清晰记得Godot官方文档有明确的解释&#xff0c;所以整理下发给做特效的同学。 Shadertoy是一个网站&#xff0c;它方便用户编写片段着色器并创造出纯粹的魔法。…

网站排名下降的原因和解决方法(SEO优化失误可能导致网站排名下降)

SEO优化是网站推广的重要环节&#xff0c;它可以提升网站的访问量和排名。但是&#xff0c;SEO优化不当也可能会导致网站排名下降。本文将分析SEO优化失误可能导致网站排名下降的原因&#xff0c;并提供相应的解决方法。 一&#xff1a;标题——SEO优化过度 SEO优化的目的是为…

数据结构与算法--排序算法复习

目录 1.三种常见的简单排序&#xff1a; 1.1冒泡排序 1.2 选择排序 1.3 插⼊排序 2 常见高级排序算法 2.1 希尔排序 2.2 快速排序 2.3 归并排序 2.4计数排序 先上结论&#xff1a; 1.三种常见的简单排序&#xff1a; 1.1冒泡排序 1.⾸先在未排序数组的⾸位开始&#…

spring_javaConfig实现配置

现在我们尝试不使用Spring的XML文件来配置了&#xff0c;全权交给Java来做 1 编写pojo类 这个类要被Spring接管&#xff0c;要被注册到容器中 添加Component注解通过Value注解来为属性注入值 package com.wq.pojo;import org.springframework.beans.factory.annotation.Value…

利用芯片74hc165为单片机增加输入扩展端口proteus仿真arduino

我们前面的博文《输入端口少如何扩展&#xff1f;74hc148或74ls148级联在arduino中实现16转4的应用》介绍了148,148输入后可以立即输出到数码管&#xff0c;可以说它是自带编BCD编码器的。而今天这里我们主要介绍的74hc165是没有编码器&#xff0c;这里我们以proteus为仿真环境…

CMake高级用法实例分析(学习paddle官方的CMakeLists)

cmake基础学习教程 https://juejin.cn/post/6844903557183832078 官方完整CMakeLists cmake_minimum_required(VERSION 3.0) project(PaddleObjectDetector CXX C)option(WITH_MKL "Compile demo with MKL/OpenBlas support,defaultuseMKL." ON) o…