Linux C++ OpenVINO 物体检测 Demo

目录

main.cpp

#include <iostream>
#include <string>
#include <vector>
#include <openvino/openvino.hpp> 
#include <opencv2/opencv.hpp>    
#include <dirent.h>  
#include <stdio.h> 
#include <time.h>
#include <unistd.h>std::vector<cv::Scalar> colors = { cv::Scalar(0, 0, 255) , cv::Scalar(0, 255, 0) , cv::Scalar(255, 0, 0) ,cv::Scalar(255, 100, 50) , cv::Scalar(50, 100, 255) , cv::Scalar(255, 50, 100) };const std::vector<std::string> class_names = {"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light","fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow","elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee","skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard","tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple","sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch","potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone","microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear","hair drier", "toothbrush" };using namespace cv;
using namespace dnn;Mat letterbox(const cv::Mat& source)
{int col = source.cols;int row = source.rows;int _max = MAX(col, row);Mat result = Mat::zeros(_max, _max, CV_8UC3);source.copyTo(result(Rect(0, 0, col, row)));return result;
}int main()
{clock_t start, end;std::cout << "共8步" << std::endl;char   buffer[100];getcwd(buffer, 100);std::cout << "当前路径:" << buffer << std::endl;// -------- Step 1. Initialize OpenVINO Runtime Core --------std::cout << "1. Initialize OpenVINO Runtime Core" << std::endl;ov::Core core;// -------- Step 2. Compile the Model --------std::cout << "2. Compile the Model" << std::endl;String model_path = String(buffer) + "/yolov8s.xml";std::cout << "model_path:\t" << model_path << std::endl;ov::CompiledModel compiled_model;try {compiled_model = core.compile_model(model_path, "CPU");}catch (std::exception& e) {std::cout << "Compile the Model 异常:" << e.what() << std::endl;return 0;}// -------- Step 3. Create an Inference Request --------std::cout << "3. Create an Inference Request" << std::endl;ov::InferRequest infer_request = compiled_model.create_infer_request();// -------- Step 4.Read a picture file and do the preprocess --------std::cout << "4.Read a picture file and do the preprocess" << std::endl;String img_path = String(buffer) + "/test2.jpg";std::cout << "img_path:\t" << img_path << std::endl;Mat img = cv::imread(img_path);// Preprocess the imageMat letterbox_img = letterbox(img);float scale = letterbox_img.size[0] / 640.0;Mat blob = blobFromImage(letterbox_img, 1.0 / 255.0, Size(640, 640), Scalar(), true);// -------- Step 5. Feed the blob into the input node of the Model -------std::cout << "5. Feed the blob into the input node of the Model" << std::endl;// Get input port for model with one inputauto input_port = compiled_model.input();// Create tensor from external memoryov::Tensor input_tensor(input_port.get_element_type(), input_port.get_shape(), blob.ptr(0));// Set input tensor for model with one inputinfer_request.set_input_tensor(input_tensor);start = clock();// -------- Step 6. Start inference --------std::cout << "6. Start inference" << std::endl;infer_request.infer();end = clock();std::cout << "inference time = " << double(end - start) << "us" << std::endl;// -------- Step 7. Get the inference result --------std::cout << "7. Get the inference result" << std::endl;auto output = infer_request.get_output_tensor(0);auto output_shape = output.get_shape();std::cout << "The shape of output tensor:\t" << output_shape << std::endl;int rows = output_shape[2];        //8400int dimensions = output_shape[1];  //84: box[cx, cy, w, h]+80 classes scoresstd::cout << "8. Postprocess the result " << std::endl;// -------- Step 8. Postprocess the result --------float* data = output.data<float>();Mat output_buffer(output_shape[1], output_shape[2], CV_32F, data);transpose(output_buffer, output_buffer); //[8400,84]float score_threshold = 0.25;float nms_threshold = 0.5;std::vector<int> class_ids;std::vector<float> class_scores;std::vector<Rect> boxes;// Figure out the bbox, class_id and class_scorefor (int i = 0; i < output_buffer.rows; i++) {Mat classes_scores = output_buffer.row(i).colRange(4, 84);Point class_id;double maxClassScore;minMaxLoc(classes_scores, 0, &maxClassScore, 0, &class_id);if (maxClassScore > score_threshold) {class_scores.push_back(maxClassScore);class_ids.push_back(class_id.x);float cx = output_buffer.at<float>(i, 0);float cy = output_buffer.at<float>(i, 1);float w = output_buffer.at<float>(i, 2);float h = output_buffer.at<float>(i, 3);int left = int((cx - 0.5 * w) * scale);int top = int((cy - 0.5 * h) * scale);int width = int(w * scale);int height = int(h * scale);boxes.push_back(Rect(left, top, width, height));}}//NMSstd::vector<int> indices;NMSBoxes(boxes, class_scores, score_threshold, nms_threshold, indices);// -------- Visualize the detection results -----------for (size_t i = 0; i < indices.size(); i++) {int index = indices[i];int class_id = class_ids[index];rectangle(img, boxes[index], colors[class_id % 6], 2, 8);std::string label = class_names[class_id] + ":" + std::to_string(class_scores[index]).substr(0, 4);Size textSize = cv::getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, 0);Rect textBox(boxes[index].tl().x, boxes[index].tl().y - 15, textSize.width, textSize.height + 5);cv::rectangle(img, textBox, colors[class_id % 6], FILLED);putText(img, label, Point(boxes[index].tl().x, boxes[index].tl().y - 5), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255, 255, 255));}cv::imwrite("detection.png", img);std::cout << "detect success" << std::endl;cv::imshow("window",img);cv::waitKey(0);return 0;
}

 CMakeLists.txt

cmake_minimum_required(VERSION 3.0)project(openvino_test )find_package(OpenCV REQUIRED )find_package(OpenVINO REQUIRED )file(COPY test.jpg DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
file(COPY test2.jpg DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
file(COPY yolov8s.xml DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
file(COPY yolov8s.bin DESTINATION ${CMAKE_CURRENT_BINARY_DIR})add_executable(openvino_test main.cpp )target_link_libraries(openvino_test ${OpenCV_LIBS} openvino)

编译 

ll

mkdir build
cd build
cmake ..

make

 

ll

 

测试运行

./openvino_test

 效果

Demo下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/134742.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【探索Linux】—— 强大的命令行工具 P.8(进程地址空间)

阅读导航 前言一、内存空间分布二、什么是进程地址空间1. 概念2. 进程地址空间的组成 三、进程地址空间的设计原理1. 基本原理2. 虚拟地址空间 概念 大小和范围 作用 虚拟地址空间的优点 3. 页表 四、为什么要有地址空间五、总结温馨提示 前言 前面我们讲了C语言的基础知识&am…

3. MongoDB高级进阶

3. MongoDB高级进阶 3.1. MongoDB的复制集 3.1.1. 复制集及原理 MongoDB复制集的主要意义在于实现服务高可用 复制集的现实依赖于两个方面的功能: 数据写入时将数据迅速复制到另一个独立节点上在接受写入的节点发生故障时自动选举出一个新的替代节点 复制集在实现高可用的…

抽象类和接口

目录 抽象类 接口 基本概念 多接口使用 为什么接口解决了Java的多继承问题&#xff1f; 接口的继承 克隆 Clonable接口 拷贝 Object类 抽象类 1.使用abstract修饰的方法称为抽象方法 2.使用abstract修饰的类称为抽象类 3.抽象类不可以被实例化 e.g.Shape shape ne…

计算机毕业设计 基于SSM+Vue的农业信息管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

Docker概念通讲

目录 什么是Docker&#xff1f; Docker的应用场景有哪些&#xff1f; Docker的优点有哪些&#xff1f; Docker与虚拟机的区别是什么&#xff1f; Docker的三大核心是什么&#xff1f; 如何快速安装Docker&#xff1f; 如何修改Docker的存储位置&#xff1f; Docker镜像常…

shell脚本学习教程(一)

shell脚本学习 一、什么是 Shell&#xff1f;1. shell概述2. Shell 的分类3. 第一个shell脚本4. 多命令执行 二、Shell 变量3.1 变量的命名规则3.2 变量的特殊符号3.3 用户自定义变量3.4 环境变量3.5 位置参数变量3.6 预定义变量3.7 接受键盘输入 三、Shell 运算符3.1 算术运算…

解决 SQLyog 连接 MySQL8.0+ 报错:错误号码2058

文章目录 一、问题现象二、原因分析三、解决方案1. 方案1&#xff1a;更新SQLyog版本2. 方案2&#xff1a;修改用户的授权插件3. 方案3&#xff1a;修复my.cnf 或 my.ini配置文件 四、最后总结 本文将总结如何解决 SQLyog 连接 MySQL8.0 时报错&#xff1a;错误号码2058 一、问…

管理类联考——数学——汇总篇——知识点突破——代数——等差数列——最值

等差数列 S n S_n Sn​的最值问题 1.等差数列前n项和 S n S_n Sn​有最值的条件 &#xff08;1&#xff09;若 a 1 < 0 &#xff0c; d > 0 a_1<0&#xff0c;d>0 a1​<0&#xff0c;d>0时&#xff0c; S n S_n Sn​有最小值。 &#xff08;2&#xff09;若…

Linux网络基础

一.协议的概念 1.1协议的概念 什么是协议 从应用的角度出发&#xff0c;协议可理解为“规则”&#xff0c;是数据传输和数据的解释的规则。假设&#xff0c;A、B双方欲传输文件。规定: 第一次&#xff0c;传输文件名&#xff0c;接收方接收到文件名&#xff0c;应答OK给传输方…

LeetCode(力扣)134. 加油站Python

LeetCode134. 加油站 题目链接代码 题目链接 https://leetcode.cn/problems/gas-station/description/ 代码 class Solution:def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:cursum 0minfuel float(inf)for i in range(len(gas)):rest gas[i…

[EI复现】基于主从博弈的新型城镇配电系统产消者竞价策略(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

数据库连接工具Chat2DB介绍

1、Chat2DB介绍 Chat2DB 是一款有开源免费的多数据库客户端工具&#xff0c;支持windows、mac本地安装&#xff0c;也支持服务器端部署&#xff0c;web网页访问。和传统的数据库客户端软件Navicat、DBeaver 相比Chat2DB集成了AIGC的能力&#xff0c;能够将自然语言转换为SQL&a…

vue+element-ui el-descriptions 详情渲染组件二次封装(Vue项目)

目录 1、需求 2.想要的效果就是由图一变成图二 ​编辑 3.组件集成了以下功能 4.参数配置 示例代码 参数说明 5,组件 6.页面使用 1、需求 一般后台管理系统&#xff0c;通常页面都有增删改查&#xff1b;而查不外乎就是渲染新增/修改的数据&#xff08;由输入框变成输…

安卓恶意应用识别(三)(批量反编译与属性值提取)

前言 上篇说到对安卓APK反编译&#xff0c;本篇实现批量反编译和批量特征提取及计算&#xff0c;主要就是通过python代码与cmd进行批量化交互&#xff0c;我在写文章之前&#xff0c;尝试批量下载了安卓apk&#xff08;大约10来个&#xff09;&#xff0c;发现现在这个应用软件…

腾讯mini项目-【指标监控服务重构】2023-08-23

今日已办 进度和问题汇总 请求合并 feature/venus tracefeature/venus metricfeature/profile-otel-baserunner-stylebugfix/profile-logger-Syncfeature/profile_otelclient_enable_config 完成otel 开关 trace-采样metrice-reader 已经都在各自服务器运行&#xff0c;并接入…

SmartSQL 一款开源的数据库文档管理工具

建议直接蓝奏云下载安装 蓝奏云下载&#xff1a;https://wwoc.lanzoum.com/b04dpvcxe 蓝奏云密码&#xff1a;123 项目介绍 SmartSQL 是一款方便、快捷的数据库文档查询、导出工具&#xff01;从最初仅支持 数据库、CHM文档格式开始&#xff0c;通过不断地探索开发、集思广…

【C刷题】day2

一、选择题 1、以下程序段的输出结果是&#xff08; &#xff09; #include<stdio.h> int main() { char s[] "\\123456\123456\t"; printf("%d\n", strlen(s)); return 0; } A: 12 B: 13 C: 16 D: 以上都不对【答案】&#xff1a; A 【解析】…

springboot和vue:二、springboot特点介绍+热部署热更新

springboot特点介绍 能够使用内嵌的Tomcat、Jetty服务器&#xff0c;不需要部署war文件。提供定制化的启动器Starters&#xff0c;简化Maven配置&#xff0c;开箱即用。纯Java配置&#xff0c;没有代码生成&#xff0c;也不需要XML配置。提供了生产级的服务监控方案&#xff0…

Linux Day15:线程安全

一、线程安全方法 线程安全即就是在多线程运行的时候&#xff0c;不论线程的调度顺序怎样&#xff0c;最终的结果都是 一样的、正确的。那么就说这些线程是安全的。 要保证线程安全需要做到&#xff1a; 1&#xff09; 对线程同步&#xff0c;保证同一时刻只有一个线程访问临…

Spring 的注入

目录 一、注入&#xff08;Injection&#xff09; 1、什么是注入 &#xff08;1&#xff09;为什么需要注入 &#xff08;2&#xff09;如何进行注入 2、Spring 注入原理分析&#xff08;简易版&#xff09; 二、Set 注入详解 1、JDK 内置类型 &#xff08;1&#xff09…