LeetCode 周赛上分之旅 #45 精妙的 O(lgn) 扫描算法与树上 DP 问题

⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。

学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。

本文是 LeetCode 上分之旅系列的第 45 篇文章,往期回顾请移步到文章末尾~

LeetCode 双周赛 113 概览

T1. 使数组成为递增数组的最少右移次数(Easy)

  • 标签:模拟、暴力、线性遍历

T2. 删除数对后的最小数组长度(Medium)

  • 标签:二分答案、双指针、找众数、

T3. 统计距离为 k 的点对(Medium)

  • 标签:枚举、散列表

T4. 可以到达每一个节点的最少边反转次数(Hard)

  • 标签:树上 DP


T1. 使数组成为递增数组的最少右移次数(Easy)

https://leetcode.cn/problems/minimum-right-shifts-to-sort-the-array/description/

题解一(暴力枚举)

简单模拟题。

由于题目数据量非常小,可以把数组复制一份拼接在尾部,再枚举从位置 i i i 开始长为 n n n 的连续循环子数组是否连续,是则返回 ( n − i ) % n (n - i)\%n (ni)%n

class Solution {fun minimumRightShifts(nums: MutableList<Int>): Int {val n = nums.sizenums.addAll(nums)for (i in 0 until n) {if ((i + 1 ..< i + n).all { nums[it] > nums[it - 1]}) return (n - i) % n}return -1}
}
class Solution:def minimumRightShifts(self, nums: List[int]) -> int:n = len(nums)nums += numsfor i in range(0, n):if all(nums[j] > nums[j - 1] for j in range(i + 1, i + n)):return (n - i) % nreturn -1

复杂度分析:

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2) 双重循环;
  • 空间复杂度: O ( n ) O(n) O(n) 循环数组空间。

题解二(线性遍历)

更优的写法,我们找到第一个逆序位置,再检查该位置后续位置是否全部为升序,且满足 n u m s [ n − 1 ] < n u m s [ 0 ] nums[n - 1] < nums[0] nums[n1]<nums[0]

class Solution {fun minimumRightShifts(nums: List<Int>): Int {val n = nums.sizefor (i in 1 until n) { // 第一段if (nums[i] >= nums[i - 1]) continue// 第二段if (nums[n - 1] > nums[0]) return -1for (j in i until n - 1) { if (nums[j] > nums[j + 1]) return -1}return n - i}return 0}
}

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) i i i 指针和 j j j 指针总计最多移动 n n n 次;
  • 空间复杂度: O ( 1 ) O(1) O(1) 仅使用常量级别空间。

T2. 删除数对后的最小数组长度(Medium)

https://leetcode.cn/problems/minimum-array-length-after-pair-removals/

题解一(二分答案)

问题存在单调性:

  • 当操作次数 k k k 可以满足时,操作次数 k − 1 k - 1 k1 一定能满足;
  • 当操作次数 k k k 不可满足时,操作次数 k + 1 k + 1 k+1 一定不能满足。

那么,原问题相当于求解满足目标的最大操作次数。

现在需要考虑的问题是:如何验证操作次数 k k k 是否可以完成?

一些错误的思路:

  • 尝试 1 - 贪心双指针: n u m s [ i ] nums[i] nums[i] 优先使用最小值, n u m s [ j ] nums[j] nums[j] 优先使用最大值,错误用例: [ 1236 ] [1 2 3 6] [1236]
  • 尝试 2 - 贪心: n u m s [ i ] nums[i] nums[i] 优先使用最小值, n u m s [ j ] nums[j] nums[j] 使用大于 n u m s [ i ] nums[i] nums[i] 的最小值,错误用例: [ 1246 ] [1 2 4 6] [1246]
  • 尝试 3 - 贪心: 从后往前遍历, n u m s [ i ] nums[i] nums[i] 优先使用较大值, n u m s [ j ] nums[j] nums[j] 使用大于 n u m s [ i ] nums[i] nums[i] 的最小值,错误用例: [ 2348 ] [2 3 4 8] [2348]

开始转换思路:

能否将数组拆分为两部分,作为 nums[i] 的分为一组,作为 n u m s [ j ] nums[j] nums[j] 的分为一组。 例如,在用例 [ 12 ∣ 36 ] [1 2 | 3 6] [12∣36] [ 12 ∣ 46 ] [1 2 | 4 6] [12∣46] [ 23 ∣ 48 ] [2 3 | 4 8] [23∣48] 中,将数组的前部分作为 n u m s [ i ] nums[i] nums[i] 而后半部分作为 n u m s [ j ] nums[j] nums[j] 时,可以得到最优解,至此发现贪心规律。

设数组的长度为 n n n,最大匹配对数为 k k k

  • 结论 1: 使用数组的左半部分作为 n u m s [ i ] nums[i] nums[i] 且使用数组的右半部分作为 n u m s [ j ] nums[j] nums[j] 总能取到最优解。反之,如果使用右半部分的某个数 n u m s [ t ] nums[t] nums[t] 作为 n u m s [ i ] nums[i] nums[i],相当于占用了一个较大的数,不利于后续 n u m s [ i ] nums[i] nums[i] 寻找配对;
  • 结论 2: 当固定 n u m s [ i ] nums[i] nums[i] 时, n u m s [ j ] nums[j] nums[j] 越小越好,否则会占用一个较大的位置,不利于后续 n u m s [ i ] nums[i] nums[i] 寻找配对。因此最优解一定是使用左半部分的最小值与右半部分的最小值配对。

总结:如果存在  k k k 对匹配,那么一定可以让最小的  k k k 个数和最大的  k k k 个数匹配。

基于以上分析,可以写出二分答案:

class Solution {fun minLengthAfterRemovals(nums: List<Int>): Int {val n = nums.sizevar left = 0var right = n / 2while (left < right) {val k = (left + right + 1) ushr 1if ((0 ..< k).all { nums[it] < nums[n - k + it] }) {left = k} else {right = k - 1}}return n - 2 * left}
}

复杂度分析:

  • 时间复杂度: O ( n l g n ) O(nlgn) O(nlgn) 二分答案次数最大为 l g n lgn lgn 次,单次检验的时间复杂度是 O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1) 仅使用常量级别空间。

题解二(双指针)

基于题解一的分析,以及删除操作的上界 n / 2 n / 2 n/2,我们可以仅使用数组的后半部分与前半部分作比较,具体算法:

  • i 指针指向索引 0 0 0
  • j 指针指向索引 ( n + 1 ) / 2 (n + 1) / 2 (n+1)/2
  • 向右枚举 j j j 指针,如果 i i i j j j 指针指向的位置能够匹配,则向右移动 i i i 指针;
  • 最后 i i i 指针移动的次数就等于删除操作次数。
class Solution {fun minLengthAfterRemovals(nums: List<Int>): Int {val n = nums.sizevar i = 0for (j in (n + 1) / 2 until n) {if (nums[i] < nums[j]) i++}return n - 2 * i}
}

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) 线性遍历;
  • 空间复杂度: O ( 1 ) O(1) O(1) 仅使用常量级别空间。

题解三(众数)

由于题目的操作只要满足 n u m s [ i ] < n u m s [ j ] nums[i] < nums[j] nums[i]<nums[j],即两个数不相等即可,那么问题的解最终仅取决于数组中的众数的出现次数:

  • 如果众数的出现次数比其他元素少,那么所有元素都能删除,问题的结果就看数组总长度是奇数还是偶数;
  • 否则,剩下的元素就是众数: s − ( n − s ) s - (n - s) s(ns)

最后,由于数组是非递减的,因此可以在 O ( 1 ) O(1) O(1) 空间求出众数的出现次数:

class Solution {fun minLengthAfterRemovals(nums: List<Int>): Int {val n = nums.sizevar s = 1var cur = 1for (i in 1 until n) {if (nums[i] == nums[i - 1]) {s = max(s, ++ cur)} else {cur = 1}}if (s <= n - s) {return n % 2} else {return s - (n - s)}}
}

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) 线性遍历;
  • 空间复杂度: O ( 1 ) O(1) O(1) 仅使用常量级别空间。

题解四(找规律 + 二分查找)

继续挖掘数据规律:

s < = n − s s <= n - s s<=ns 等价于众数的出现次数超过数组长度的一半,由于数组是有序的,那么一定有数组的中间位置就是众数,我们可以用二分查找找出众数在数组中出现位置的边界,从而计算出众数的出现次数。

由此,我们甚至不需要线性扫描都能计算出众数以及众数的出现次数,Nice!

当然,最后计算出来的出现次数有可能没有超过数组长度的一半。

class Solution {fun minLengthAfterRemovals(nums: List<Int>): Int {val n = nums.sizeval x = nums[n / 2]val s = lowerBound(nums, x + 1) - lowerBound(nums, x)return max(2 * s - n, n % 2)}fun lowerBound(nums: List<Int>, target: Int): Int {var left = 0var right = nums.size - 1while (left < right) {val mid = (left + right + 1) ushr 1if (nums[mid] >= target) {right = mid - 1} else {left = mid}}return if (nums[left] == target) left else left + 1}
}

复杂度分析:

  • 时间复杂度: O ( l g n ) O(lgn) O(lgn) 单次二分查找的时间复杂度是 O ( l g n ) O(lgn) O(lgn)
  • 空间复杂度: O ( 1 ) O(1) O(1) 仅使用常量级别空间。

相似题目:

  • 2576. 求出最多标记下标

T3. 统计距离为 k 的点对(Medium)

https://leetcode.cn/problems/count-pairs-of-points-with-distance-k/

题解(散列表)

  • 问题目标: ( x 1 x o r x 2 ) + ( y 1 x o r y 2 ) = = k (x1 xor x2) + (y1 xor y2) == k (x1xorx2)+(y1xory2)==k 的方案数;
  • 技巧: 对于存在多个变量的问题,可以考虑先固定其中一个变量;

容易想到两数之和的问题模板,唯一需要思考的问题是如何设计散列表的存取方式:

对于满足 ( x 1 x o r x 2 ) + ( y 1 x o r y 2 ) = = k (x1\ xor\ x2) + (y1\ xor\ y2) == k (x1 xor x2)+(y1 xor y2)==k 的方案,我们抽象为两部分 i + j = k i + j = k i+j=k,其中, i = ( x 1 x o r x 2 ) i = (x1\ xor\ x2) i=(x1 xor x2) 的取值范围为 [ 0 , k ] [0, k] [0,k],而 j = k − i j = k - i j=ki,即总共有 k + 1 k + 1 k+1 种方案。本题的 k k k 数据范围很小,所以我们可以写出时间复杂度 O ( n k ) O(nk) O(nk) 的算法。

class Solution {fun countPairs(coordinates: List<List<Int>>, k: Int): Int {var ret = 0// <x, <y, cnt>>val map = HashMap<Int, HashMap<Int, Int>>()for ((x2, y2) in coordinates) {// 记录方案for (i in 0 .. k) {if (!map.containsKey(i xor x2)) continueret += map[i xor x2]!!.getOrDefault((k - i) xor y2, 0)}// 累计次数map.getOrPut(x2) { HashMap<Int, Int>() }[y2] = map[x2]!!.getOrDefault(y2, 0) + 1}return ret}
}

Python 计数器支持复合数据类型的建,可以写出非常简洁的代码:

class Solution:def countPairs(self, coordinates: List[List[int]], k: int) -> int:c = Counter()ret = 0for x2, y2 in coordinates:# 记录方案for i in range(k + 1):ret += c[(i ^ x2, (k - i) ^ y2)]# 累计次数c[(x2, y2)] += 1return ret

复杂度分析:

  • 时间复杂度: O ( n ⋅ k ) O(n·k) O(nk) 线性枚举,每个元素枚举 k k k 种方案;
  • 空间复杂度: O ( n ) O(n) O(n) 散列表空间。

T4. 可以到达每一个节点的最少边反转次数(Hard)

https://leetcode.cn/problems/minimum-edge-reversals-so-every-node-is-reachable/

问题分析

初步分析:

  • 问题目标: 求出以每个节点为根节点时,从根节点到其他节点的反转操作次数,此题属于换根 DP 问题

思考实现:

  • 暴力: 以节点 i i i 为根节点走一次 BFS/DFS,就可以在 O ( n ) O(n) O(n) 时间内求出每个节点的解,整体的时间复杂度是 O ( n 2 ) O(n^2) O(n2)

思考优化:

  • 重叠子问题: 相邻边连接的节点间存在重叠子问题,当我们从根节点 u u u 移动到其子节点 v v v 时,我们可以利用已有信息在 O ( 1 ) O(1) O(1) 时间算出 v v v 为根节点时的解。

具体实现:

  • 1、随机选择一个点为根节点 u u u,在一次 DFS 中根节点 u u u 的反转操作次数:
  • 2、 u → v u → v uv 的状态转移:
    • 如果 u → v u → v uv 是正向边,则反转次数 + 1 + 1 +1
    • 如果 u → v u → v uv 是反向边,则反转次数 − 1 - 1 1(从 v v v u u u 不用反转);
  • 3、由于题目是有向图,我们可以转换为无向图,再利用标记位 1 1 1 − 1 -1 1 表示边的方向, 1 1 1 为正向边, − 1 -1 1 为反向边。

题解(换根 DP)

class Solution {fun minEdgeReversals(n: Int, edges: Array<IntArray>): IntArray {val dp = IntArray(n)val graph = Array(n) { LinkedList<IntArray>() }// 建图for ((from, to) in edges) {graph[from].add(intArrayOf(to, 1))graph[to].add(intArrayOf(from, -1))}// 以 0 为根节点fun dfs(i: Int, fa: Int) {for ((to, gain) in graph[i]) {if (to == fa) continueif (gain == -1) dp[0] ++dfs(to, i)}}fun dp(i: Int, fa: Int) {for ((to, gain) in graph[i]) {if (to == fa) continue// 状态转移dp[to] = dp[i] + gaindp(to, i)}}dfs(0, -1)dp(0, -1)return dp}
}

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) DFS 和换根 DP 都是 O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n) 递归栈空间与 DP 数组空间。

推荐阅读

LeetCode 上分之旅系列往期回顾:

  • LeetCode 单周赛第 361 场 · 同余前缀和问题与经典倍增 LCA 算法
  • LeetCode 单周赛第 360 场 · 当 LeetCode 考树上倍增,出题的趋势在变化吗
  • LeetCode 双周赛第 112 场 · 计算机科学本质上是数学吗?
  • LeetCode 双周赛第 111 场 · 按部就班地解决动态规划问题

⭐️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/135057.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt基于paintEvent自定义CharView

Qt基于paintEvent自定义CharView 鼠标拖动&#xff0c;缩放&#xff0c;区域缩放&#xff0c; 针对x轴&#xff0c;直接上代码 charview.h #ifndef CHARVIEW_H #define CHARVIEW_H#include <QWidget> #include <QPainter> #include <QPaintEvent> #inclu…

unity学习第1天

本身也具有一些unity知识&#xff0c;包括Eidtor界面使用、Shader效果实现、性能分析&#xff0c;但对C#、游戏逻辑不太清楚&#xff0c;这次想从开发者角度理解游戏&#xff0c;提高C#编程&#xff0c;从简单的unity游戏理解游戏逻辑&#xff0c;更好的为工作服务。 unity201…

CMU 15-445 Project #3 - Query Execution(Task #1、Task #2)

文章目录 一、题目链接二、准备工作三、SQL 语句执行流程四、BusTub 表结构五、Task #1 - Access Method Executors5.1 顺序扫描执行器5.2 插入执行器5.3 删除执行器5.4 索引扫描执行器 六、Task #2 - Aggregation & Join Executors6.1 聚合执行器6.2 循环连接执行器6.3 索…

python 二手车数据分析以及价格预测

二手车交易信息爬取、数据分析以及交易价格预测 引言一、数据爬取1.1 解析数据1.2 编写代码爬1.2.1 获取详细信息1.2.2 数据处理 二、数据分析2.1 统计分析2.2 可视化分析 三、价格预测3.1 价格趋势分析(特征分析)3.2 价格预测 引言 本文着眼于车辆信息&#xff0c;结合当下较…

Linux的调试工具 - gdb(超详细)

Linux的调试工具 - gdb 1. 背景2. 开始使用指令的使用都用下面这个C语言简单小代码来进行演示&#xff1a;1. list或l 行号&#xff1a;显示文件源代码&#xff0c;接着上次的位置往下列&#xff0c;每次列10行。2. list或l 函数名:列出某个函数的源代码。3. r或run: 运行程序。…

7.前端·新建子模块与开发(自动生成)

文章目录 学习地址视频笔记自动代码生成模式开发增删改查功能调试功能权限分配 脚本实现权限分配 学习地址 https://www.bilibili.com/video/BV13g411Y7GS/?p15&spm_id_frompageDriver&vd_sourceed09a620bf87401694f763818a31c91e 视频笔记 自动代码生成模式开发 …

简单返回封装实体类(RespBean)

RespBean的作用 返回状态码&#xff0c;返回信息&#xff0c;返回数据 package com.example.entity;import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;Data AllArgsConstructor NoArgsConstructor public class RespBean {private lon…

AndroidStudio 安装与配置【安装教程】

1.下载软件 进入官网https://developer.android.google.cn/studio&#xff0c;直接点击下载 2.阅读并同意协议书 直接下滑至最底部 如果这里出现了无法访问 官方地址&#xff1a;https://redirector.gvt1.com/edgedl/android/studio/install/2022.3.1.19/android-studio-2022.…

Windows11系统C盘用户文件夹下用户文件夹为中文,解决方案

说明&#xff1a; 1. 博主电脑为Windows11操作系统&#xff0c;亲测有效&#xff0c;修改后无任何影响&#xff0c;软件都可以正常运行&#xff01; 2. Windows10系统还不知道可不可行&#xff0c;因为Windows11的计算机管理中没有本地用户和组&#xff0c;博主在csdn上看到很…

后端中间件安装与启动(Redis、Nginx、Nacos、Kafka)

后端中间件安装与启动 RedisNginxNacosKafka Redis 1.打开cmd终端&#xff0c;进入redis文件目录 2.输入redis-server.exe redis.windows.conf即可启动&#xff0c;不能关闭cmd窗口 &#xff08;端口配置方式&#xff1a;redis目录下的redis.windows.conf配置文件&#xff0c;…

Pytorch-MLP-Mnist

文章目录 model.pymain.py参数设置注意事项初始化权重如果发现loss和acc不变关于数据下载关于输出格式 运行图 model.py import torch.nn as nn import torch.nn.functional as F import torch.nn.init as initclass MLP_cls(nn.Module):def __init__(self,in_dim28*28):super…

快递、外卖、网购自动定位及模糊检索收/发件地址功能实现

概述 目前快递、外卖、团购、网购等行业 &#xff1a;为了简化用户在收发件地址填写时的体验感&#xff0c;使用辅助定位及模糊地址检索来丰富用户的体验 本次demo分享给大家&#xff1b;让大家理解辅助定位及模糊地址检索的功能实现过程&#xff0c;以及开发出自己理想的作品…

【C++初阶】C++STL详解(四)—— vector的模拟实现

​ ​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;C初阶 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 【C初阶】CSTL详解&#xff08;三…

Python 文件写入操作

视频版教程 Python3零基础7天入门实战视频教程 w模式是写入&#xff0c;通过write方法写入内容。 # 打开文件 模式w写入&#xff0c;文件不存在&#xff0c;则自动创建 f open("D:/测试3.txt", "w", encoding"UTF-8")# write写入操作 内容写入…

C++---继承

继承 前言继承的概念及定义继承的概念继承定义继承关系和访问限定符 基类和派生类对象赋值转换继承中的作用域派生类的默认成员函数继承与友元继承与静态成员**多重继承**多继承下的类作用域菱形继承虚继承使用虚基类 支持向基类的常规类型转换 前言 在需要写Father类和Mother…

Python爬虫实战案例——第五例

文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff01;严禁将文中内容用于任何商业与非法用途&#xff0c;由此产生的一切后果与作者无关。若有侵权&#xff0c;请联系删除。 目标&#xff1a;采集三国杀官网的精美壁纸 地址&#xff1a;aHR0cHM6Ly93d3…

Qt/C++音视频开发54-视频监控控件的极致设计

一、前言 跌跌撞撞摸爬滚打一步步迭代完善到今天&#xff0c;这个视频监控控件的设计&#xff0c;在现阶段水平上个人认为是做的最棒的&#xff08;稍微自恋一下&#xff09;&#xff0c;理论上来说应该可以用5年不用推翻重写&#xff0c;推翻重写当然也是程序员爱干的事情&am…

Visual Studio2019报错

1- Visual Studio2019报错 错误 MSB8036 找不到 Windows SDK 版本 10.0.19041.0的解决方法 小伙伴们在更新到Visual Studio2019后编译项目时可能遇到过这个错误&#xff1a;“ 错误 MSB8036 找不到 Windows SDK 版本 10.0.19041.0的解决方法”&#xff0c;但是我们明明安装了该…

Linux多线程【线程控制】

✨个人主页&#xff1a; 北 海 &#x1f389;所属专栏&#xff1a; Linux学习之旅 &#x1f383;操作环境&#xff1a; CentOS 7.6 阿里云远程服务器 文章目录 &#x1f307;前言&#x1f3d9;️正文1、线程知识补充1.2、线程私有资源1.3、线程共享资源1.4、原生线程库 2、线程…

安卓机型固件系统分区的基础组成 手机启动规律初步常识 各分区的基本含义与说明

此贴为基本常识。感兴趣的友友可以了解手机的启动顺序和各模式的基本操作与意义。另外了解手机系统分区各文件夹的含义 分区说明对应贴&#xff1a;安卓机型固件中分区对应说明 手机开机基本启动顺序 当我们按下手机开机键的时候。基本的启动顺序为 注意&#xff1a;该结构图…