【GC日志和OOM日志分析】JVM GC日志和OOM Dump文件分析

1 缘起

充电、充电、充电。
增加一些必备的知识,帮助后续使用。
请添加图片描述

2 配置JVM参数

为分析GC日志以及OOM相关信息,配置JVM参数,分为三个部分:
(1)堆内存,包括年轻代、最大堆内存;
(2)GC日志配置;
(3)OOM转存dump配置。
完整参数:
-Xmn10m -Xmx70m -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:./logs/gc.log -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=D:\data\jvm

-Xmn10m -Xmx70m -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:./logs/gc.log -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=D:\data\jvm

2.1 堆参数

参数描述
-Xmn10m年轻代分配10MB内存
-Xmx70m最大堆分配70MB内存,其中,最大堆内存=年轻代+老年代

2.2 GC日志参数

参数描述
-XX:+PrintGCDetails开启GC日志打印
-XX:+PrintGCDateStampsGC日志日期戳,格式: 2024-10-05T20:26:21.145+0800: 234.514
-Xloggc:./logs/gc.log指定GC日志输出文件路径

2.3 OOM dump转储参数

参数描述
-XX:+HeapDumpOnOutOfMemoryError开启OOM转储Dump文件
-XX:HeapDumpPath=D:\data\jvm配置Dump文件路径

开启GC日志并写入到指定目录下,添加启动参数:

-XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:./logs/gc.log

启动服务后,在日志文件gc.log中查看GC内容如下,这里开启了时间戳(PrintGCDateStamps)。

3 GC分析

GC分析其实是分析GC日志内容,了解当前JVM GC状态,主要包括GC频率、回收内存大小,通过这些信息可以了解JVM状态。
依据这些状态,为我们优化JVM(主要是堆内存)提供理论数据支持,这里主要是解析GC日志参数并没有依据这些状态指导JVM调优
GC日志:
在这里插入图片描述

3.1 YGC

YGC日志如下,Allocation Failure说明分配内存失败,需要内存回收。
PSYoungGen:年轻代内存回收,
以第一行数据为例,
2024-10-05T20:25:28.185+0800: 181.555: [GC (Allocation Failure) [PSYoungGen: 7424K->192K(8704K)] 65370K->58146K(70144K), 0.0024832 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

2024-10-05T20:25:28.185+0800: 181.555: [GC (Allocation Failure) [PSYoungGen: 7424K->192K(8704K)] 65370K->58146K(70144K), 0.0024832 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 

首先分析日志内容,各信息分析如下:
在这里插入图片描述

YGC回收频率以及内存回收大小可以通过JConsole或者Visual VM可视化,可视化的原始数据来自于GC日志。
每分钟YGC3~4次,每次回收内存:如4256K-96K=4160K=4MB。

在这里插入图片描述

2.2 Full GC

FullGC发生的情况是:年轻代已不足以为新对象分配内存+老年代仍不足以为新对象分配内存,触发Full GC,同时清理年轻代和老年代内存,Full GC直接影响系统的稳定性,我们要最大限度地减少Full GC(依据实际情况而定)。
Full GC日志如下:

2024-10-05T20:26:33.546+0800: 246.916: [Full GC (Ergonomics) [PSYoungGen: 4096K->0K(7168K)] [ParOldGen: 60327K->48792K(61440K)] 64423K->48792K(68608K), [Metaspace: 73978K->73972K(1116160K)], 0.0804215 secs] [Times: user=0.12 sys=0.00, real=0.08 secs]

Full GC各部分信息如下:

在这里插入图片描述

在模拟的请求中,主动触发Full GC,日志如下,
由日志可知,Full GC有两种情况:Ergonomics和Allocation Failure,当发生Full GC时,如果无法释放出足够内存给新对象使用,会一直进行Full GC,并抛出OOM异常,OOM异常会在Error日志中。

在这里插入图片描述

OOM Error日志,通过OOM日志,我们仅可知道发生了OOM,而无法确定发生OOM的位置,需要通过Dump文件分析。

在这里插入图片描述

4 OOM分析

通过GC日志,我们仅能了解到发生了Full GC,并不能直接定位到引发Full GC的位置,
最终导致无法定位引发OOM的原因,
因此,配置OOM发生后转储Dump文件,通过分析OOM Dump文件寻找引发OOM的原因。
通过异常日志可以直接发现发生OOM。
配置OOM Dump转储:
-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=D:\data\jvm

-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=D:\data\jvm

4.1 OOM日志

当发生OOM时,日志中会给出异常日志,java.lang.OutOfMemoryError,
模拟OOM异常日志如下,配置OOM转储Dump文件,可以在指定的路径找到。
在这里插入图片描述

在这里插入图片描述

4.2 OOM Dump文件

通过Visual VM载入OOM Dump文件,文件后缀:hprof。

在这里插入图片描述

Visual VM载入hprof文件,步骤以及OOM信息如下:

在这里插入图片描述

通过OOM Error线程信息可以查看引发OOM的位置,位置信息如下,
这里的OOM信息是我在项目中模拟出来的,
位置是接口方法:testUserInfo,因此,我们可以分析这个接口的所有逻辑,找出OOM的原因,三类方案:
(1)增加年轻代和老年代内存;
(2)调整业务逻辑,优化数据拼装,减小内存占用;
(3)接口限流。

在这里插入图片描述

5 小结

(1)GC通过日志可以呈现的有:YGC和Full GC,其中,YGC中展示的信息中是新生代Eden区垃圾回收情况,并且Eden区和Survivor的比例是会发生变化的;Full GC展示的信息有新生代Eden区和老年代;
(2)OOM异常信息仅能提供发生了OOM,无法直接定位在哪里导致的OOM,需要通过Dump文件分析;
(3)配置GC日志和OOM转存参数:

参数描述
-XX:+PrintGCDetails开启GC日志打印
-XX:+PrintGCDateStampsGC日志日期戳,格式: 2024-10-05T20:26:21.145+0800: 234.514
-Xloggc:./logs/gc.log指定GC日志输出文件路径
-XX:+HeapDumpOnOutOfMemoryError开启OOM转储Dump文件
-XX:HeapDumpPath=D:\data\jvm配置Dump文件路径

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/439971.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VUE 开发——Node.js学习(一)

一、认识Node.js Node.js是一个跨平台JavaScript运行环境,使开发者可以搭建服务器端的JavaScript应用程序 使用Node.js编写服务器端程序——编写数据接口、前端工程化; Node.js环境没有BOM和DOM; Node.js安装:下载node-v16.19…

深度学习----------------------注意力机制

目录 心理学不随意线索随意线索 注意力机制非参注意力池化层Nadaraya-Watson核回归参数化的注意力机制 总结注意力汇聚:Nadaraya-Watson核回归代码生成数据集核回归非参数注意力汇聚注意力权重该部分总代码 带参数的注意力汇聚将训练数据集转换为键和值训练带参数的…

[Linux] 进程创建、退出和等待

标题:[Linux] 进程创建、退出和等待 个人主页水墨不写bug (图片来源于AI) 目录 一、进程创建fork() 1) fork的返回值: 2)写时拷贝 ​编辑3)fork常规用法 4&#xff…

线性代数书中求解齐次线性方程组、非齐次线性方程组方法的特点和缺陷(附实例讲解)

目录 一、克拉默法则 1. 方法概述 2. 例16(1) P45 3. 特点 (1) 只适用于系数矩阵是方阵 (2) 只适用于行列式非零 (3) 只适用于唯一解的情况 (4) 只适用于非齐次线性方程组 二、逆矩阵 1. 方法概述 2. 例16(2) P45 3. 特点 (1) 只适用于系数矩阵必须是方阵且可逆 …

计算机毕业设计 基于Python的无人超市管理系统的设计与实现 Python+Django+Vue 前后端分离 附源码 讲解 文档

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点…

Leecode热题100-560.和为k的子数组

给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列。 示例 1: 输入:nums [1,1,1], k 2 输出:2示例 2: 输入:nums [1,2,3], k…

五、类与对象包访问权限

类与对象&包&访问权限 类的定义类的概念定义和使用类对象的初始化类的成员函数 再谈基本类型运算符重载函数中缀函数空值和空类型解构包和导入访问权限控制内部类 类的定义 在之前,我们一直在使用顶层定义: 在Kotlin中,顶层定义&…

计算机网络:计算机网络概述 —— 网络拓扑结构

文章目录 网络拓扑总线型拓扑特点缺陷 星型拓扑特点缺陷 环型拓扑特点缺陷 网状型拓扑优点缺陷 树型拓扑特点缺陷 网络拓扑 网络拓扑指的是计算机网络中节点(计算机、交换机、路由器等)之间物理或逻辑连接的结构。网络拓扑定义了节点之间的布局、连接方…

基于ssm 框架的java 开发语言的 在线教育学习平台系统设计与实现 源码 论文

博主介绍:专注于Java(springboot ssm springcloud等开发框架) vue .net php phython node.js uniapp小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作 ☆☆☆ 精彩专栏推荐订阅☆☆☆…

【高等数学学习记录】函数的极限

一、知识点 (一)知识结构 #mermaid-svg-Dz0Ns0FflWSBWY50 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-Dz0Ns0FflWSBWY50 .error-icon{fill:#552222;}#mermaid-svg-Dz0Ns0FflWSBWY50 .erro…

ROW_NUMBER

How to rewrite a query which uses the ROW_NUMBER() window function in versions 5.7 or earlier before window functions were supported e.g., SELECT ROW_NUMBER() OVER (PARTITION BY fieldA) AS rownum, myTable.* FROM myTable; index 用不上的 Solution Assuming…

保姆级手把手使用YOLOv11训练自己数据集(含源代码、网络结构、模型检测和转换 、数据集查找、模型训练)

文章目录 前言项目地址项目内容:网络模型结构性能测试任务描述任务内容 项目运行模型训练 前言 本教程内含YOLOv11网络结构图训练教程推理教程数据集获取等有关的内容~ 项目地址 YOLO11是Ultralytics YOLO系列实时目标检测器的最新迭代版本,它以尖端的…

打卡第三天 P5729 【深基5.例7】工艺品制作

今天是我打卡第三天&#xff0c;做个入门题吧(#^.^#) 原题链接&#xff1a;【深基5.例7】工艺品制作 - 洛谷 题目描述 输入格式 输出格式 输出一个整数表示答案。 输入输出样例 输入 #1 4 4 4 1 1 1 1 2 2 2 输出 #1 56 说明/提示 C&#xff1a; #include<bits/std…

使用 classification_report 评估 scikit-learn 中的分类模型

介绍 在机器学习领域&#xff0c;评估分类模型的性能至关重要。scikit-learn 是一个功能强大的 Python 机器学习工具&#xff0c;提供了多种模型评估工具。其中最有用的函数之一是 classification_report&#xff0c;它可以全面概述分类模型的关键指标。在这篇文章中&#xff…

低组装滚珠导轨:承载力强,适应多样工况!

在自动化行业中&#xff0c;高质量、高效率的生产线是确保产品品质和生产效率的关键。而低组装型滚珠导轨作为生产线中的重要组件之一&#xff0c;能够提供精准的直线运动控制&#xff0c;为自动化设备的稳定运行和高精度检测提供可靠支持。 相对于传统的导轨系统来说&#xff…

汇编语言笔记2

7.MASM,NASM,ATT,ARM的介绍 MASM:Windows下编译汇编指令的软件,可以在DOSBox下运行 NASM:优化版的MASM,主要用于Linux操作系统 ATT:Linux默认的汇编风格(但不友好) ARM:非PC(IOT设备)的汇编,比如写51单片机打开keil4的界面可以看到ARM 8.汇编 C语言 C 之间的关系 发展历程…

Arduino UNO R3自学笔记21 之 Arduino电机的闭环控制

注意&#xff1a;学习和写作过程中&#xff0c;部分资料搜集于互联网&#xff0c;如有侵权请联系删除。 前言&#xff1a;上篇写了电机速度测定&#xff0c;这篇主要是讲测定出的速度用于反馈&#xff0c;使得实际速度快速响应到需要的速度。 1.控制系统介绍 分2大类&#x…

《深度学习》【项目】OpenCV 发票识别 透视变换、轮廓检测解析及案例解析

目录 一、透视变换 1、什么是透视变换 2、操作步骤 1&#xff09;选择透视变换的源图像和目标图像 2&#xff09;确定透视变换所需的关键点 3&#xff09;计算透视变换的变换矩阵 4&#xff09;对源图像进行透视变换 5&#xff09;对变换后的图像进行插值处理 二、轮廓检测…

idea插件市场安装没反应

https://plugins.jetbrains.com/idea重启后还是不行那就

Docker:安装 MongoDB 的详细指南

请关注微信公众号&#xff1a;拾荒的小海螺 博客地址&#xff1a;http://lsk-ww.cn/ 1、简述 MongoDB 是一个流行的 NoSQL 数据库&#xff0c;可以在 Docker 容器中轻松安装和运行。本文将介绍如何在 Docker 中安装 MongoDB&#xff0c;并展示如何在 Java 应用中使用 MongoDB…