redis 集群(cluster)

1. 前言

我们知道,在Web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999% 等等)。但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(主存分离、快速容灾技术)还需要考虑数据容量的扩展,数据安全不会丢失等。

在Redis中,实现高可用技术主要包括持久化主存复制``、哨兵集群,下面分别说明他们的作用以及解决了什么问题。

  • 持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失
  • 主存复制:复制是高可用Redis的基础,哨兵和集群都是在复制基础上实现高可用的。复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制
  • 哨兵:在复制的基础上,哨兵实现了自动化的故障转移。缺陷:写操作无法负载均衡;存储能力受单机限制
  • 集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受单机限制的问题,实现了较为完善的高可用方案

2. 夯实基础

2.1 什么是redis 集群

由于数据量过大,单个Master复制集难以承担,因此需要对多个复制集进行集群,形成水平扩展每个复制集只负责存储整个数据集的一部分,这就是Redis的集群,其作用是提供在多个Redis节点间共享数据的程序集。
在这里插入图片描述Redis集群是一个提供在多个Redis节点间共享数据的程序集,Redis集群可以支持多个Master。

2.2 redis 集群的作用

1)Redis集群支持多个Master,每个Master又可以挂载多个Slave

  • 读写分离
  • 支持数据的高可用
  • 支持海量数据的读写存储操作

2)由于Cluster自带Sentinel的故障转移机制,内置了高可用的支持,无需再去使用哨兵功能。
3)客户端与Redis的节点连接,不再需要连接集群中所有的节点,只需要任意连接集群中的一个可用节点即可。
4)槽位slot负责分配到各个物理服务节点,由对应的集群来负责维护节点、插槽和数据之间的关系。

2.3 集群算法-分片-槽位slot

2.3.1 定义

在这里插入图片描述
具体参见:https://redis.io/docs/reference/cluster-spec/#key-distribution-model

2.3.2 Redis 集群槽位slot

Redis集群没有使用一致性hash,而是引入了哈希槽的概念。

Redis集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。

举个例子:比如当前集群有3个节点,那么:
在这里插入图片描述

2.3.3 Redis 集群分片

1)分片是什么?

使用Redis集群时我们会将存储的数据分散到多台redis机器上,这称为分片。简言之,集群中的每个Redis实例都被认为是整个数据的一个分片。

2)如何找到给定key的分片

为了找到给定key的分片,我们对key进行CRC16(key)算法处理并通过对总分片数量取模。然后,使用确定性哈希函数,这意味着给定的key将多次始终映射到同一个分片,我们可以推断将来读取特定key的位置。
在这里插入图片描述

2.3.4 集群槽位分片的优势

最大优势:方便扩缩容和数据分派查找。

这种结构很容易添加或者删除节点,比如如果我想新添加个节点D,我需要从节点A、B、C中取部分槽到D上,如果我移除节点A,需要将A中的槽移到B和C节点上,然后将没有任何槽的A节点从集群中移除即可。

由于从一个节点将哈希槽移动到另一个节点并不会停止服务,所以无论添加删除或者改变某个节点的哈希槽的数量都不会造成集群不可用的状态。

2.4 slot槽位映射(常见3种方案)

2.4.1 哈希取分区

2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:hash(key) % N个机器台数

计算出哈希值,用来决定数据映射到哪一个节点上。
在这里插入图片描述
优点:
简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。

缺点:
原来规划好的节点,进行扩容或者缩容就比较麻烦了额,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:Hash(key)/3会变成Hash(key) /?

此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。

2.4.2 一致性哈希算法分区

1)定义
一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数就会变动

2)作用
提出一致性HASH解决方案,目的是当服务器个数发生变动时,尽量减少影响客户端到服务器的映射关系。

3)实现步骤

第一步: 算法构建一次性哈希环

一致性哈希环:一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。

它也是按照使用取模的方法,前面介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对2^32 取模

简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形)。

整个哈希环如下图:整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、……直到232-1,也就是说0点左侧的第一个点代表232-1, 0和232-1在零点中方向重合,我们把这个由232个点组成的圆环称为Hash环。

在这里插入图片描述

第二步:Redis服务器IP节点映射

节点映射:将集群中各个IP节点映射到环上的某一个位置。

将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:
在这里插入图片描述

第三步:key落到服务器的落键规则

当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。

如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。
在这里插入图片描述
4)一致性hash方式的优缺点

主要优点
(1)容错性:假设Node C宕机,可以看到此时对象A、B、D不会受到影响。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。

简单说,就是C挂了,受到影响的只是B、C之间的数据且这些数据会转移到D进行存储。

在这里插入图片描述

(2) 扩展性:数据量增加了,需要增加一台节点NodeX,X的位置在A和B之间,那收到影响的也就是A到X之间的数据,重新把A到X的数据录入到X上即可,不会导致hash取余全部数据重新洗牌。
在这里插入图片描述

主要缺点:一致性哈希算法的数据倾斜问题

一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,

例如系统中只有两台服务器:
在这里插入图片描述
5)小总结

为了在节点数目发生改变时尽可能少的迁移数据,将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。

而当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点。

优点:加入和删除节点只影响哈希环中顺时针方向的相邻的节点,对其他节点无影响。
缺点 :数据的分布和节点的位置有关,因为这些节点不是均匀的分布在哈希环上的,所以数据在进行存储时达不到均匀分布的效果,存在数据倾斜问题

2.4.3 哈希槽分区

1)为什么会出现哈希槽分区方案
因为一致性哈希算法的数据倾斜问题。哈希槽实质就是一个数组,数组[0,2^14-1]形成hash slot空间。

2)主要作用

解决均匀分配的问题,在数据和节点之间又加入一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系, 现在就相当于节点上放的是槽,槽里放的是数据。
在这里插入图片描述
槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配。

3)多少个hash槽

一个集群只能有16384个槽,编号0-16383(0,2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。

集群会记录节点和槽的对应关系,解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取模,余数是几key就落入对应的槽里。HASH_SLOT = CRC16(key) mod 16384。以槽位单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。

4)哈希槽计算

Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。

当需要在 Redis 集群中放置一个 key-value时,redis先对key使用crc16算法算出一个结果然后用结果对16384求余数[ CRC16(key) % 16384],这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。

如下代码,key之A 、B在Node2, key之C落在Node3上
在这里插入图片描述
在这里插入图片描述

2.4.4 注意事项

Redis集群不保证强一致性,这意味着在特定的条件下,Redis集群可能会丢掉一些被系统收到的写入请求命令。

3. 面试题及解析

3.1 为什么redis集群的最大槽数是16384个?

Redis集群并没有使用一致性hash而是引入了哈希槽的概念。

Redis 集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。但为什么哈希槽的数量是16384(2^14)个呢?

CRC16算法产生的hash值有16bit,该算法可以产生2^16=65536个值。
换句话说值是分布在0~65535之间,有更大的65536不用为什么只用16384就够?作者在做mod运算的时候,为什么不mod65536,而选择mod16384? HASH_SLOT = CRC16(key) mod 65536为什么没启用 具体参见

总而言之。

(1) 如果槽位为65536,发送心跳信息的消息头达8k,发送的心跳包过于庞大。

  1. 在消息头中最占空间的是myslots[CLUSTER_SLOTS/8]。 当槽位为65536时,这块的大小是: 65536÷8÷1024=8kb
  2. 在消息头中最占空间的是myslots[CLUSTER_SLOTS/8]。 当槽位为16384时,这块的大小是: 16384÷8÷1024=2kb

因为每秒钟,redis节点需要发送一定数量的ping消息作为心跳包,如果槽位为65536,这个ping消息的消息头太大了,浪费带宽。

(2) redis的集群主节点数量基本不可能超过1000个。

集群节点越多,心跳包的消息体内携带的数据越多。如果节点过1000个,也会导致网络拥堵。因此redis作者不建议redis cluster节点数量超过1000个。 那么,对于节点数在1000以内的redis cluster集群,16384个槽位够用了。没有必要拓展到65536个。

(3)槽位越小,节点少的情况下,压缩比高,容易传输

Redis主节点的配置信息中它所负责的哈希槽是通过一张bitmap的形式来保存的,在传输过程中会对bitmap进行压缩,但是如果bitmap的填充率slots / N很高的话(N表示节点数),bitmap的压缩率就很低。 如果节点数很少,而哈希槽数量很多的话,bitmap的压缩率就很低。

4. 总结


相关材料

  1. https://redis.io/docs/reference/cluster-spec/
  2. redis集群知识点

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/135921.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

6.3 字符数组

思维导图: 前言: 主要内容: 前言内容整理 字符型数据和存储 字符型数据是依据字符的ASCII代码存储在内存单元中,通常占用一个字节的空间。ASCII代码可以被认为是整数,因此在C99标准中,字符类型被归类为整…

现在进入广告行业好做吗?

广告行业真的很好,大家快来…… 在这里你可以无限发挥你的创意和想象力,有趣的同事,不刻板的工作内容,与爱豆合作,偶尔见见明星,出入城市CBD,一身名牌,精美PPT挥斥方遒,…

渗透测试之漏洞挖掘指南(一)

1.漏洞挖掘中什么漏洞最多? 新手想快速挖掘到漏洞,要专注在业务逻辑与前端漏洞 -- 业务逻辑 (弱密码,等等) -- 前端漏洞 (xss, csrf , cors, jsonp...) 2. 常见漏洞提交平台 注册应急响应中…

数据清洗:数据挖掘的前期准备工作

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…

【unity小技巧】Unity 存储存档保存——PlayerPrefs、JsonUtility和MySQL数据库的使用

文章目录 前言PlayerPrefs一、基本介绍二、Demo三、优缺点 JsonUtility一、基本使用二、Demo三、优缺点 Mysql(扩展)完结 前言 游戏存档不言而喻,是游戏设计中的重要元素,可以提高游戏的可玩性,为玩家提供更多的自由和…

更新GitLab上的项目

更新GitLab上的项目 如有需要,请参考这篇:上传项目到gitlab上 1.打开终端,进入到本地项目的根目录。 2.如果你还没有将远程GitLab仓库添加到本地项目,你可以使用以下命令: 比如: git remote add origin …

如何下载安装 WampServer 并结合 cpolar 内网穿透,轻松实现对本地服务的公网访问

文章目录 前言1.WampServer下载安装2.WampServer启动3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4.固定公网地址访问 前言 Wamp 是一个 Windows系统下的 Apache PHP Mysql 集成安装环境,是一组常用来…

ns2无线局域网隐藏节点仿真实验

ns2无线局域网隐藏节点仿真实验 实验内容实验原理实验过程相关模块安装仿真模块 问题总结问题一问题二问题三 实验内容 无线网络与移动技术第二次实验,用ns2完成无线局域网隐藏节点仿真实验。 实验原理 隐藏节点指在接收节点的覆盖范围内而在发送节点的覆盖范围外…

个人博客网站一揽子:Docker搭建图床(Lsky Pro)

Lsky Pro 介绍 Lsky Pro 是一个用于在线上传、管理图片的图床程序,中文名:兰空图床,你可以将它作为自己的云上相册,亦可以当作你的写作贴图库。 兰空图床始于 2017 年 10 月,最早的版本由 ThinkPHP 5 开发&#xff0…

在Kubernetes上安装和配置Istio:逐步指南,展示如何在Kubernetes集群中安装和配置Istio服务网格

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

线性代数的本质——几何角度理解

B站网课来自 3Blue1Brown的翻译版,看完醍醐灌顶,强烈推荐: 线性代数的本质 本课程从几何的角度翻译了线代中各种核心的概念及性质,对做题和练习效果有实质性的提高,下面博主来总结一下自己的理解 1.向量的本质 在物…

Mac中IntelliJ IDEA每次打开立刻“意外退出”的解决方法

本文介绍在Mac电脑中,无法打开IntelliJ IDEA软件,出现“意外退出”的报错提示,且重启软件依然出现这一情况的通用解决思路与方法。 最近,不知道怎么回事,点击图标准备打开IntelliJ IDEA软件时,很快就会出现…

SpringBoot实战(二十四)集成 LoadBalancer

目录 一、简介1.定义2.取代 Ribbon3.主要特点与功能4.LoadBalancer 和 OpenFeign 的关系 二、使用场景一:Eureka LoadBalancer服务A:loadbalancer-consumer 消费者1.Maven依赖2.application.yml配置3.RestTemplateConfig.java4.DemoController.java 服务…

计算机专业毕业设计项目推荐07-科研成果管理系统(JavaSpringBoot+Vue+Mysql)

科研成果管理系统(JavaSpringBootVueMysql) **介绍****系统总体开发情况-功能模块****各部分模块实现****最后想说的****联系方式** 介绍 本系列(后期可能博主会统一为专栏)博文献给即将毕业的计算机专业同学们,因为博主自身本科和硕士也是科班出生,所以…

Mybatis学习笔记8 查询返回专题

1.返回实体类 2.返回List<实体类> 3.返回Map 4.返回List<Map> 5.返回Map<String,Map> 6.resultMap结果集映射 7.返回总记录条数 新建模块 依赖 目录结构 1.返回实体类 如果返回多条,用单个实体接收会出异常 2.返回List<实体类> 即使返回一条记…

​bing许少辉乡村振兴战略下传统村落文化旅游设计images

​bing许少辉乡村振兴战略下传统村落文化旅游设计images

PHP8的类与对象的基本操作之成员方法-PHP8知识详解

成员方法是指在类中声明的函数。 在类中可以声明多个函数&#xff0c;所以对象中可以存在多个成员方法。类的成员方法可以通过关键字进行修饰&#xff0c;从而控制成员方法的商用权限。 函数和成员方法唯一的区别就是&#xff0c;函数实现的是某个独立的功能&#xff0c;而成…

【Gradle-8】Gradle插件开发指南

1、前言 Gradle插件开发在Android进阶知识中是占有一定比例的&#xff0c;特别是在性能优化领域&#xff0c;基本都会涉及&#xff0c;而且跟我们日常的编译打包也息息相关&#xff0c;加上有不少招聘要求里也明确要有Gradle插件开发经验&#xff0c;所以即使大部分人的日常开…

Vue3_vite

使用Vue-cli创建 使用vite创建 Composition API 组合API setup 1.Vue3中的一个新的配置项,值为一个函数 2.可以将组件中所用到的数据,方法等配置在setup中. 3.setup函数的两种返回值 3.1若返回一个对象,则对象中的属性,方法,在模板中均可以直接使用. 3.2若返回一个渲染函数…

【数据库系统概论】数据模型

数据模型是什么两类数据模型两步抽象概念模型数据模型 常用的数据模型感谢 &#x1f496; 数据模型是什么 模型是对现实世界中某个对象特征的模拟和抽象。比如飞机模型就体现了飞机的特性&#xff0c;它模拟飞机的起飞、飞行和降落&#xff0c;它抽象了飞机的基本特征——机头…