WebGL 视图矩阵、模型视图矩阵

目录

立方体由三角形构成

视点和视线

视点、观察目标点和上方向

视点:

观察目标点:

上方向:

在WebGL中,观察者的默认状态应该是这样的:

视图矩阵程序(LookAtTriangles.js) 

 实际上,“根据自定义的观察者状态,绘制观察者看到的景象”与“使用默认的观察状态,但是对三维对象进行平移、旋转等变换,再绘制观察者看到的景象”,这两种行为是等价的。(归根结底:不论视图怎样变化,无疑就是旋转、平移等操作,最终本质上都是对物体进行相反方向的旋转平移(默认的视角))

移动视点和移动被观察对象等效

从指定视点观察旋转后的三角形

<旋转后顶点坐标>=<旋转矩阵>×<原始顶点坐标>

<“从视点看上去”的旋转后顶点坐标>=<视图矩阵>×<旋转后顶点坐标>

<“从视点看上去”的旋转后顶点坐标>=<视图矩阵>×<旋转矩阵>×<原始顶点坐标>

<视图矩阵>×<模型矩阵>×<原始顶点坐标>

模型视图矩阵程序(LookAtRotatedTriangles.js) 

模型视图矩阵

<模型视图矩阵>=<视图矩阵>×<模型矩阵>

<模型视图矩阵>×<顶点坐标>


立方体由三角形构成

三维物体也是由二维图形(特别是三角形)组成的。如下图所示,12个三角形组成了一个立方体。

既然三维物体是由三角形组成的,那么则需要逐个绘制组成物体的每个三角形,最终就可以绘制出整个三维物体了。但是,三维与二维还有一个显著区别:在绘制二维图形时,只需要考虑顶点的x和y坐标,而绘制三维物体时,还得考虑它们的深度信息(depth information)。那就开始吧,首先我们来研究一下如何定义三维世界的观察者:在什么地方、朝哪里看、视野有多宽、能看多远。

视点和视线

三维物体与二维图形的最显著区别就是,三维物体具有深度,也就是Z轴。因此,你会遇到一些之前不曾考虑过的问题。事实上,我们最后还是得把三维场景绘制到二维的屏幕上,即绘制观察者看到的世界,而观察者可以处在任意位置观察。为了定义一个观察者,你需要考虑以下两点:

● 观察方向,即观察者自己在什么位置,在看场景的哪一部分?

● 可视距离,即观察者能够看多远?

我们将观察者所处的位置称为视点(eye point),从视点出发沿着观察方向的射线称作视线(viewing direction)。本次将研究如何通过视点和视线来描述观察者。到下面我们再来研究“观察者能看多远”的问题。 

我们来创建一个新的示例程序LookAtTriangles。在程序中,视点位于(0.20,0.25,0.25),视线向着原点(0,0,0)方向,可以看到原点附近有三个三角形。程序中的这三个三角形前后错落摆放,以帮助你理解三维场景中深度的概念。下图显示了LookAtTriangles的运行结果。

视点、观察目标点和上方向

为了确定观察者的状态,你需要获取两项信息:视点,即观察者的位置;观察目标点(look-at point),即被观察目标所在的点,它可以用来确定视线。此外,因为我们最后要把观察到的景象绘制到屏幕上,还需要知道上方向(up direction)。有了这三项信息,就可以确定观察者的状态了。下面将逐一进行解释(见下图)。

视点:

观察者所在的三维空间中位置,视线的起点。在接下来的几节中,视点坐标都用(eyeX,eyeY,eyeZ)表示。 

观察目标点:

被观察目标所在的点。视线从视点出发,穿过观察目标点并继续延伸。注意,观察目标点是一个点,而不是视线方向,只有同时知道观察目标点和视点,才能算出视线方向。观察目标点的坐标用(atX,atY,atZ)表示。

上方向:

最终绘制在屏幕上的影像中的向上的方向。试想,如果仅仅确定了视点和观察点,观察者还是可能以视线为轴旋转的(如下图所示,头部偏移会导致观察到的场景也偏移了)。所以,为了将观察者固定住,我们还需要指定上方向。上方向是具有3个分量的矢量,用(upX,upY,upZ)表示。

在WebGL中,我们可以用上述三个矢量创建一个视图矩阵(view matrix),然后将该矩阵传给顶点着色器。视图矩阵可以表示观察者的状态,含有观察者的视点、观察目标点、上方向等信息。之所以被称为视图矩阵,是因为它最终影响了显示在屏幕上的视图,也就是观察者观察到的场景。根据提供的Matrix4.setLookAt()函数可以根据上述三个矢量:视点、观察点和上方向,来创建出视图矩阵 (矩阵库 WebGL矩阵变换库_山楂树の的博客-CSDN博客)。 

在WebGL中,观察者的默认状态应该是这样的:

● 视点位于坐标系统原点(0,0,0)。

● 视线为Z轴负方向,观察点为(0,0,-1)

如果将上方向改为X轴正半轴方向(1,0,0),你将看到场景旋转了90度。

创建这样一个矩阵,你只需要简单地使用如下代码(见下图)。

现在,你已经了解了setLookAt()函数,下面来看示例程序的代码。

视图矩阵程序(LookAtTriangles.js) 

程序显示了LookAtTriangles.js的代码,我们修改了视点,然后绘制了3个三角形,如上图三角形所示。实际上这3个三角形的颜色分别为蓝色到红色、黄色到红色和绿色到红色的渐变色。

var VSHADER_SOURCE ='attribute vec4 a_Position;\n' +'attribute vec4 a_Color;\n' +'uniform mat4 u_ViewMatrix;\n' +'varying vec4 v_Color;\n' +'void main() {\n' +'  gl_Position = u_ViewMatrix * a_Position;\n' +'  v_Color = a_Color;\n' +'}\n';var FSHADER_SOURCE ='#ifdef GL_ES\n' +'precision mediump float;\n' +'#endif\n' +'varying vec4 v_Color;\n' +'void main() {\n' +'  gl_FragColor = v_Color;\n' +'}\n';function main() {var canvas = document.getElementById('webgl');var gl = getWebGLContext(canvas);if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {console.log('Failed to intialize shaders.');return;}// 设置顶点坐标和颜色(蓝色三角形在最前面)var n = initVertexBuffers(gl);gl.clearColor(0, 0, 0, 1);// 获取u_ViewMatrix变量的存储地址var u_ViewMatrix = gl.getUniformLocation(gl.program, 'u_ViewMatrix');// 设置视点、视线和上方向var viewMatrix = new Matrix4();viewMatrix.setLookAt(0.20, 0.25, 0.25, 0, 0, 0, 0, 1, 0);// 将视图矩阵传给u_ViewMatrix变量gl.uniformMatrix4fv(u_ViewMatrix, false, viewMatrix.elements);gl.clear(gl.COLOR_BUFFER_BIT);// 绘制三角形gl.drawArrays(gl.TRIANGLES, 0, n);
}function initVertexBuffers(gl) {var verticesColors = new Float32Array([// 顶点和坐标颜色0.0,  0.5,  -0.4,  0.4,  1.0,  0.4, // 绿色三角形在最后面-0.5, -0.5,  -0.4,  0.4,  1.0,  0.4,0.5, -0.5,  -0.4,  1.0,  0.4,  0.4, 0.5,  0.4,  -0.2,  1.0,  0.4,  0.4, // 黄色三角形在中间-0.5,  0.4,  -0.2,  1.0,  1.0,  0.4,0.0, -0.6,  -0.2,  1.0,  1.0,  0.4, 0.0,  0.5,   0.0,  0.4,  0.4,  1.0,  // 蓝色三角形在最前面-0.5, -0.5,   0.0,  0.4,  0.4,  1.0,0.5, -0.5,   0.0,  1.0,  0.4,  0.4, ]);var n = 9;// 创建缓冲区对象var vertexColorbuffer = gl.createBuffer();  gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorbuffer);gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW);var FSIZE = verticesColors.BYTES_PER_ELEMENT;var a_Position = gl.getAttribLocation(gl.program, 'a_Position');gl.vertexAttribPointer(a_Position, 3, gl.FLOAT, false, FSIZE * 6, 0);gl.enableVertexAttribArray(a_Position);var a_Color = gl.getAttribLocation(gl.program, 'a_Color');gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, FSIZE * 6, FSIZE * 3);gl.enableVertexAttribArray(a_Color);gl.bindBuffer(gl.ARRAY_BUFFER, null);return n;
}

首先,来看一下initVertexBuffers()函数(第42行)。verticesColors数组包含了3个三角形共计9个顶点的数据,而且顶点坐标的z分量也不再是0了。接着我们创建了缓冲区对象(第57行),并将数组中的数据填了进去(第58~59行)。此外,我们还把gl.drawArrays()的第3个参数改成了9(第39行),因为这里共有9个顶点。

然后,需要建立视图矩阵(包含了视点、视线和上方向信息)并传给顶点着色器。为此,我们先创建了一个Matrix4对象viewMatrix(第33行),然后用setLookAt()方法将其设置为视图矩阵(第34行),最后将视图矩阵中的元素传给顶点着色器中的u_ViewMatrix变量(第36行)。

 实际上,“根据自定义的观察者状态,绘制观察者看到的景象”与“使用默认的观察状态,但是对三维对象进行平移、旋转等变换,再绘制观察者看到的景象”,这两种行为是等价的。(归根结底:不论视图怎样变化,无疑就是旋转、平移等操作,最终本质上都是对物体进行相反方向的旋转平移(默认的视角))

举个例子,默认情况下视点在原点,视线沿着Z轴负方向进行观察。假如我们将视点移动到(0,0,1),如下图(左)所示。这时,视点与被观察的三角形在Z轴上的距离增加了1.0个单位。实际上,如果我们使三角形沿Z轴负方向移动1.0个单位,也可以达到同样的效果,因为观察者看上去是一样的,如下图(右)所示。

移动视点和移动被观察对象等效

事实上,上述过程就发生在示例程序LookAtTriangles.js中。根据视点、观察点和上方向参数,setLookAt()方法计算出的视图矩阵恰恰就是“沿着Z轴负方向移动1.0个单位”的变换矩阵。所以,把这个矩阵与顶点坐标相乘,就相当于获得了“将视点设置在(0.0,0.0,1.0)”的效果。视点移动的方向与被观察对象(也就是整个世界)移动的方向正好相反。对于视点的旋转,也可以采用类似的方式。 

“改变观察者的状态”与“对整个世界进行平移和旋转变换”,本质上是一样的,它们都可以用矩阵来描述。接下来,我们将从一个指定的视点来观察旋转后的三角形。

从指定视点观察旋转后的三角形

现在将修改LookAtTriangles程序来绘制一个从指定位置看过去的旋转后的三角形。这时,我们需要两个矩阵:旋转矩阵(表示三角形的旋转)和视图矩阵(表示观察世界的方式)。首先有一个问题是,以怎样的顺序相乘这两个矩阵。

我们知道,矩阵乘以顶点坐标,得到的结果是顶点经过矩阵变换之后的新坐标。也就是说,用旋转矩阵乘以顶点坐标,就可以得到旋转后的顶点坐标。

用视图矩阵乘以顶点坐标会把顶点变换到合适的位置,使得观察者(以默认状态)观察新位置的顶点,就好像在观察者处在(视图矩阵描述的)视点上观察原始顶点一样。现在要在某个视点处观察旋转后的三角形,我们需要先旋转三角形,然后从这个视点来观察它。换句话说,我们需要先对三角形进行旋转变换,再对旋转后的三角形进行与“移动视点”等效的变换。我们按照上述顺序相乘两个矩阵。具体看一下等式。

我们知道,如果想旋转图形,就需要用旋转矩阵乘以旋转前的顶点坐标:

<旋转后顶点坐标>=<旋转矩阵>×<原始顶点坐标>

用视图矩阵乘以旋转后的顶点坐标,就可以获得“从视点看上去”的旋转后的顶点坐标: 

<“从视点看上去”的旋转后顶点坐标>=<视图矩阵>×<旋转后顶点坐标>

将第1个式子代入第2个,可得:

<“从视点看上去”的旋转后顶点坐标>=<视图矩阵>×<旋转矩阵>×<原始顶点坐标>

除了旋转矩阵,你还可以使用平移、缩放等基本变换矩阵或它们的组合,这时矩阵被称为模型矩阵(model matrix)。这样,上式就可以写成:

<视图矩阵>×<模型矩阵>×<原始顶点坐标>

示例程序在着色器中实现了该式。很简单,直接照着该式修改顶点着色器。修改后的LootAtRotatedTriangles程序实现了上述变换,如下图所示。图中白色虚线为旋转前三角形的所在位置,可以看到三角形确实被旋转过了。

模型视图矩阵程序(LookAtRotatedTriangles.js) 

LookAtRotatedTriangles.js与LookAtTriangles.js相比,只有几处小改动:加入了uniform变量u_ModelMatrix;JavaScript中的main()函数将模型矩阵传给该变量。相应的代码如下所示。

首先,顶点着色器中添加了uniform变量u_ModelMatrix(第7行),该变量从JavaScript中接收模型矩阵,以实现等式<视图矩阵>×<模型矩阵>×<原始顶点坐标>。 

JavaScript的main()函数已经有了与视图矩阵相关的代码,只需添加几行计算和传入旋转矩阵的代码,将三角形绕Z轴旋转10度。第53行代码实现了获取u_ModelMatrix变量的存储地址,第64行实现了创建一个新的矩阵对象modelMatrix,调用Matrix.setRotate()将其设为旋转矩阵(第65行),然后传给顶点着色器中的u_ModelMatrix(第69行)。

运行示例程序,顶点坐标依次与旋转矩阵和视图矩阵相乘,最终获得了预期的效果。如上图所示,即先用u_ModelMatrix旋转三角形,再将旋转后的坐标用u_ViewMatrix变换到正确的位置,使其看上去就像是从指定视点处观察一样。

模型视图矩阵

LookAtRotatedTriangle.js中,着色器实现了式(视图矩阵×模型矩阵×原始坐标)。这样,程序对每个顶点都要计算视图矩阵×模型矩阵。如果顶点数量很多,这一步操作就会造成不必要的开销。这是因为,无论对哪个顶点而言,式(视图矩阵×模型矩阵×原始坐标中的两个矩阵相乘的结果都是一样的。所以我们可以在JavaScript中事先把这两个矩阵相乘的结果计算出来,再传给顶点着色器。这两个矩阵相乘得到的结果被称为模型视图矩阵(model view matrix),如下所示:

<模型视图矩阵>=<视图矩阵>×<模型矩阵>

视图矩阵×模型矩阵×原始坐标可以重写为下式

<模型视图矩阵>×<顶点坐标>

新的示例程序LookAtRotatedTriangles_mvMatrix.js按照式<模型视图矩阵>×<顶点坐标>重写了LookAtRotatedTriangles中的代码,如下所示。

顶点着色器中出现了新的uniform变量u_mvMatrix,它参与了对gl_Position的计算(第9行)。顶点着色器执行的流程与最初的LookAtTriangles.js中一样(除了uniform变量的名称)。

在JavaScript代码中,我们分别计算出了视图矩阵viewMatrix和模型矩阵modelMatrix(第59~63行),就像在LookAtTriangle.js中一样。然后,我们调用Matrix4.multiply()方法使这两个矩阵相乘,并将结果赋值给modelviewMatrix(第66行)。注意,我们是在viewMatrix上调用了multiply()方法,并传入modelMatrix为参数,所以这样做的结果实际上就是modelViewMatrix=viewMatrix*modelMatrix。因为在JavaScript中,我们不能像在GLSL ES中那样直接使用*号来进行矩阵相乘,而需要用矩阵库所提供的方法。 

得到了modelViewMatrix后,就将它传给着色器的u_ModelMatrix变量(第69行)。运行程序,效果如下图所示。

最后还需要指出,示例程序显式地把视图矩阵和模型矩阵单独计算出来,再相乘为模型视图矩阵(第59~66行),是为了更好地表达模型视图矩阵的由来。实际上,只需要一行代码就可以计算出模型视图矩阵了:(计算出视图矩阵,再将视图矩阵与模型矩阵(当前只有旋转)相乘)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/135958.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

仅做笔记用:Stable Diffusion 通过 ControlNet 扩展图片 / 扩图

发觉之前的 Outpainting 脚本效果仍旧不是很理想。这里又找了一下有没有效果更好的途径来扩图。于是就找到了通过 ControlNet 的方式来实现效果更好的扩图。这里临时记录一下在 Stable Diffusion 怎么使用 ControlNet 来扩展图片。 下载 control_v11p_sd15_inpaint_fp16.safet…

多线程详解(上)

文章目录 一、线程的概念1)线程是什么2)为甚要有线程(1)“并发编程”成为“刚需”(2)在并发编程中, 线程比进程更轻量. 3)线程和进程的区别 二、Thread的使用1)线程的创建继承Thread…

自定义类型:结构体

自定义类型:结构体 一:引入二:结构体类型的声明1:正常声明2:特殊声明 三:结构体变量的创建和初始化1:结构体变量的创建2:结构体变量的初始化 三:结构体访问操作符四:结构…

【C语言】每日一题(半月斩)——day3

目录 一,选择题 1.已知函数的原型是: int fun(char b[10], int *a); 2、请问下列表达式哪些会被编译器禁止【多选】( ) 3、以下程序的输出结果为( ) 4、下面代码段的输出是( )…

大数据学习1.1-Centos8虚拟机安装

1.创建新的虚拟机 2.选择稍后安装OS 3.选择Linux的CentOS8 4.选择安装路径 5.分配20g存储空间 6.自定义硬件 7.分配2g内存 8.分配2核处理器 9.选择镜像位置 10.开启虚拟机安装 推荐密码设置为root

61、SpringBoot -----跨域资源的设置----局部设置和全局设置

★ 跨域资源共享的意义 ▲ 在前后端分离的开发架构中,前端应用和后端应用往往是彻底隔离的,二者不在同一个应用服务器内、甚至不再同一台物理节点上。 因此前端应用和后端应用就不在同一个域里。▲ 在这种架构下,前端应用可能采用前端框架&a…

序列化和反序列化:将数据变得更加通用化

序列化与反序列化简介 序列化和反序列化是计算机领域中常用的概念,用于将对象或数据结构转换为字节序列(序列化)和将字节序列转换回对象或数据结构(反序列化)。 序列化是指将对象或数据结构转换为字节序列的过程。通…

前端VUE---JS实现数据的模糊搜索

实现背景 因为后端实现人员列表返回&#xff0c;每次返回的数据量在100以内&#xff0c;要求前端自己进行模糊搜索 页面实现 因为是实时更新数据的&#xff0c;就不需要搜索和重置按钮了 代码 HTML <el-dialogtitle"团队人员详情":visible.sync"centerDi…

uni-app跳转到另一个app

第一步&#xff1a; 首先要知道 app的包名 获取方式如下 第二步&#xff1a; 在第一个 demo1 app 一个页面中需要一个按钮去跳转 方法如下 <template><view class"content"><button click"tz">跳转</button></view> </…

如何在微软Edge浏览器上一键观看高清视频?

编者按&#xff1a;视频是当下最流行的媒体形式之一。但由于视频压缩、网络不稳定等原因&#xff0c;我们常常可以看到互联网上的很多视频其画面质量并不理想&#xff0c;尤其是在浏览器端&#xff0c;这极大地影响了观看体验。不过&#xff0c;近期微软 Edge 浏览器推出了一项…

FPGA纯verilog实现8路视频拼接显示,提供工程源码和技术支持

目录 1、前言版本更新说明免责声明 2、我已有的FPGA视频拼接叠加融合方案3、设计思路框架视频源选择OV5640摄像头配置及采集静态彩条视频拼接算法图像缓存视频输出 4、vivado工程详解5、工程移植说明vivado版本不一致处理FPGA型号不一致处理其他注意事项 6、上板调试验证并演示…

Jmeter接口测试简易步骤

使用Jmeter接口测试 1、首先右键添加一个线程组&#xff0c;然后我们重命名接口测试 2、在线程组上添加一个Http默认请求&#xff0c;并配置服务器的IP地址端口等信息 3、在线程组中添加一个HTTP请求&#xff0c;这里我们重命名“增加信用卡账户信息接口” 4、配置接口请求信息…

使用延迟队列解决分布式事务问题——以订单未支付过期,解锁库存为例

目录 一、前言 二、库存 三、订单 一、前言 上一篇使用springcloud-seata解决分布式事务问题-2PC模式我们说到了使用springcloud-seata解决分布式的缺点——不适用于高并发场景 因此我们使用延迟队列来解决分布式事务问题&#xff0c;即使用柔性事务-可靠消息-最终一致性方…

Kotlin simple convert ArrayList CopyOnWriteArrayList MutableList

Kotlin simple convert ArrayList CopyOnWriteArrayList MutableList Kotlin读写分离CopyOnWriteArrayList_zhangphil的博客-CSDN博客Java并发多线程环境中&#xff0c;造成死锁的最简单的场景是&#xff1a;多线程中的一个线程T_A持有锁L1并且申请试图获得锁L2&#xff0c;而多…

Redis缓存实现及其常见问题解决方案

随着互联网技术的发展&#xff0c;数据处理的速度和效率成为了衡量一个系统性能的重要指标。在众多的数据处理技术中&#xff0c;缓存技术以其出色的性能优化效果&#xff0c;成为了不可或缺的一环。而在众多的缓存技术中&#xff0c;Redis 以其出色的性能和丰富的功能&#xf…

flutter开发实战-长按TextField输入框cut、copy设置为中文复制、粘贴

flutter开发实战-长按TextField输入框cut、copy设置为中文复制、粘贴 在开发过程中&#xff0c;需要长按TextField输入框cut、copy设置为中文“复制、粘贴”&#xff0c;这里记录一下设置的代码。 一、pubspec.yaml设置flutter_localizations 在pubspec.yaml中设置flutter_l…

23下半年学习计划

大二上学期计划 现在已经是大二了&#xff0c;java只学了些皮毛&#xff0c;要学的知识还有很多&#xff0c;新的学期要找准方向&#xff0c;把要学的知识罗列&#xff0c;按部就班地完成计划&#xff0c;合理安排时间&#xff0c;按时完成学习任务。 学习node.js&#xff0c…

企业架构LNMP学习笔记48

数据结构类型操作&#xff1a; 数据结构&#xff1a;存储数据的方式 数据类型 算法&#xff1a;取数据的方式&#xff0c;代码就把数据进行组合&#xff0c;计算、存储、取出。 排序算法&#xff1a;冒泡排序、堆排序 二分。 key&#xff1a; key的命名规则不同于一般语言…

Android 12 源码分析 —— 应用层 六(StatusBar的UI创建和初始化)

Android 12 源码分析 —— 应用层 六&#xff08;StatusBar的UI创建和初始化) 在前面的文章中,我们分别介绍了Layout整体布局,以及StatusBar类的初始化.前者介绍了整体上面的布局,后者介绍了三大窗口的创建的入口处,以及需要做的准备工作.现在我们分别来细化三大窗口的UI创建和…

GitLab使用的最简便方式

GitLab介绍 GitLab是一个基于Git版本控制系统的开源平台&#xff0c;用于代码托管&#xff0c;持续集成&#xff0c;以及协作开发。它提供了一套完整的工具&#xff0c;以帮助开发团队协同工作、管理和部署代码。 往往在企业内部使用gitlab管理代码&#xff0c;记录一下将本地代…