NLP文本生成全解析:从传统方法到预训练完整介绍

目录

  • 1. 引言
    • 1.1 文本生成的定义和作用
    • 1.2 自然语言处理技术在文本生成领域的使用
  • 2 传统方法 - 基于统计的方法
    • 2.1.1 N-gram模型
    • 2.1.2 平滑技术
  • 3. 传统方法 - 基于模板的生成
    • 3.1 定义与特点
    • 3.2 动态模板
  • 4. 神经网络方法 - 长短时记忆网络(LSTM)
    • LSTM的核心概念
    • PyTorch中的LSTM
  • 5. 神经网络方法 - Transformer
    • Transformer的核心概念
    • PyTorch中的Transformer
  • 6. 大型预训练模型 - GPT文本生成机制
    • 大型预训练模型的核心概念

本文深入探讨了文本生成的多种方法,从传统的基于统计和模板的技术到现代的神经网络模型,尤其是LSTM和Transformer架构。文章还详细介绍了大型预训练模型如GPT在文本生成中的应用,并提供了Python和PyTorch的实现代码。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

1. 引言

1.1 文本生成的定义和作用

file

文本生成是自然语言处理的一个核心子领域,它涉及使用模型来自动创建自然语言文本。这种生成可以是基于某些输入的响应,如图像或其他文本,也可以是完全自主的创造。

文本生成的任务可以是简单的,如自动回复邮件,也可以是更复杂的,如编写新闻文章或生成故事。它通常包括以下步骤:

  1. 确定目标和约束:明确生成文本的目标和约束条件,如风格、语言和长度等。
  2. 内容的生成:基于预定义的目标和约束条件来生成内容。
  3. 评价和优化:使用不同的评价指标来测试生成的文本,并进行必要的优化。

例子:

  • 自动回复邮件:根据收到的邮件内容,系统可以生成一个简短的、相关的回复。
  • 新闻文章生成:利用已有的数据和信息来自动生成新闻文章。
  • 故事生成:创建一个可以根据输入的提示来生成故事的系统。

1.2 自然语言处理技术在文本生成领域的使用

自然语言处理技术为文本生成提供了强大的工具和方法。这些技术可以用于解析输入数据、理解语言结构、评估生成文本的质量,以及优化生成过程。

  1. 序列到序列模型:这是一个广泛应用于文本生成任务的框架,如机器翻译和摘要生成。模型学习将输入序列(如句子)转化为输出序列(如另一种语言的句子)。

  2. 注意力机制:在处理长序列时,注意力机制可以帮助模型关注输入数据的关键部分,从而产生更准确的输出。

  3. 预训练语言模型:像BERT和GPT这样的模型通过大量的文本数据进行预训练,之后可以用于各种NLP任务,包括文本生成。

  4. 优化技术:如束搜索和采样策略,它们可以帮助生成更流畅、准确的文本。

例子:

  • 机器翻译:使用序列到序列模型,将英语句子转化为法语句子。
  • 生成摘要:利用注意力机制从长篇文章中提取关键信息,生成简短的摘要。
  • 文本填充:使用预训练的GPT模型,根据给定的开头生成一个完整的故事。

随着技术的进步,自然语言处理技术在文本生成中的应用也越来越广泛,为我们提供了更多的可能性和机会。


2 传统方法 - 基于统计的方法

file

在深度学习技术盛行之前,文本生成主要依赖于基于统计的方法。这些方法通过统计语料库中的词语和短语的频率,预测下一个词或短语的出现概率。

2.1.1 N-gram模型

定义:N-gram模型是基于统计的文本生成方法中的一种经典技术。它基于一个假设,即第N个词的出现只与前面的N-1个词有关。例如,在一个trigram(3-gram)模型中,下一个词的出现只与前两个词有关。

例子:考虑句子 “我爱学习人工智能”,在一个bigram(2-gram)模型中,“人工” 出现后的下一个词可能是 “智能”。

from collections import defaultdict, Counter
import randomdef build_ngram_model(text, n=2):model = defaultdict(Counter)for i in range(len(text) - n):context, word = tuple(text[i:i+n-1]), text[i+n-1]model[context][word] += 1return modeldef generate_with_ngram(model, max_len=20):context = random.choice(list(model.keys()))output = list(context)for i in range(max_len):if context not in model:breaknext_word = random.choices(list(model[context].keys()), weights=model[context].values())[0]output.append(next_word)context = tuple(output[-len(context):])return ' '.join(output)text = "我 爱 学习 人工 智能".split()
model = build_ngram_model(text, n=2)
generated_text = generate_with_ngram(model)
print(generated_text)

2.1.2 平滑技术

定义:在统计模型中,我们经常会遇到一个问题,即语料库中可能有一些N-grams从未出现过,导致其概率为0。为了解决这个问题,我们使用平滑技术来为这些未出现的N-grams分配一个非零概率。

例子:使用Add-1平滑(Laplace平滑),我们将每个词的计数加1,来保证没有词的概率为0。

def laplace_smoothed_probability(word, context, model, V):return (model[context][word] + 1) / (sum(model[context].values()) + V)V = len(set(text))
context = ('我', '爱')
probability = laplace_smoothed_probability('学习', context, model, V)
print(f"P('学习'|'我 爱') = {probability}")

通过使用基于统计的方法,虽然我们可以生成文本,但这些方法有其局限性,尤其是在处理长文本时。随着深度学习技术的发展,更先进的模型逐渐取代了传统方法,为文本生成带来了更多的可能性。


3. 传统方法 - 基于模板的生成

基于模板的文本生成是一种早期的文本生成方法,依赖于预定义的句子结构和词汇来创建文本。这种方法虽然简单直观,但其生成的文本通常缺乏变化和多样性。

3.1 定义与特点

定义:模板生成方法涉及到使用预先定义的文本模板和固定的结构,根据不同的数据或上下文填充这些模板,从而生成文本。

特点

  1. 确定性:输出是可预测的,因为它直接基于模板。
  2. 快速生成:不需要复杂的计算,只需简单地填充模板。
  3. 局限性:输出可能缺乏多样性和自然感,因为它完全基于固定模板。

例子:在天气预报中,可以有一个模板:“今天在{城市}的最高温度为{温度}度。”。根据不同的数据,我们可以填充该模板,生成如“今天在北京的最高温度为25度。”的句子。

def template_generation(template, **kwargs):return template.format(**kwargs)template = "今天在{city}的最高温度为{temperature}度。"
output = template_generation(template, city="北京", temperature=25)
print(output)

3.2 动态模板

定义:为了增加文本的多样性,我们可以设计多个模板,并根据上下文或随机性选择不同的模板进行填充。

例子:针对天气预报,我们可以有以下模板:

  1. “{city}今天的温度达到了{temperature}度。”
  2. “在{city},今天的最高气温是{temperature}度。”
import randomdef dynamic_template_generation(templates, **kwargs):chosen_template = random.choice(templates)return chosen_template.format(**kwargs)templates = ["{city}今天的温度达到了{temperature}度。","在{city},今天的最高气温是{temperature}度。"
]output = dynamic_template_generation(templates, city="上海", temperature=28)
print(output)

尽管基于模板的方法为文本生成提供了一种简单和直接的方式,但它在处理复杂和多样化的文本生成任务时可能会显得力不从心。现代深度学习方法提供了更强大、灵活和多样化的文本生成能力,逐渐成为主流方法。


4. 神经网络方法 - 长短时记忆网络(LSTM)

file
长短时记忆网络(LSTM)是一种特殊的递归神经网络(RNN),专为解决长期依赖问题而设计。在传统的RNN中,随着时间步的增加,信息的传递会逐渐变得困难。LSTM通过其特殊的结构来解决这个问题,允许信息在时间步之间更容易地流动。

LSTM的核心概念

定义:LSTM的核心是其细胞状态,通常表示为(C_t)。与此同时,LSTM包含三个重要的门:遗忘门、输入门和输出门,这三个门共同决定信息如何被更新、存储和检索。

  1. 遗忘门:决定哪些信息从细胞状态中被遗忘或丢弃。
  2. 输入门:更新细胞状态,决定哪些新信息被存储。
  3. 输出门:基于细胞状态,决定输出什么信息。

例子:假设我们正在处理一个文本序列,并想要记住某个词汇的性别标记(如“他”或“她”)。当我们遇到一个新的代词时,遗忘门可能会帮助模型忘记旧的性别标记,输入门会帮助模型存储新的标记,而输出门则会在下一个时间步输出这个标记,以保持序列的一致性。

PyTorch中的LSTM

使用PyTorch,我们可以轻松地定义和训练一个LSTM模型。

import torch.nn as nn
import torch# 定义LSTM模型
class LSTMModel(nn.Module):def __init__(self, input_dim, hidden_dim, output_dim, num_layers):super(LSTMModel, self).__init__()self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)self.linear = nn.Linear(hidden_dim, output_dim)def forward(self, x):# 初始化隐藏状态和细胞状态h0 = torch.zeros(num_layers, x.size(0), hidden_dim).requires_grad_()c0 = torch.zeros(num_layers, x.size(0), hidden_dim).requires_grad_()out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))out = self.linear(out[:, -1, :])return outinput_dim = 10
hidden_dim = 20
output_dim = 1
num_layers = 1
model = LSTMModel(input_dim, hidden_dim, output_dim, num_layers)# 一个简单的例子,输入形状为 (batch_size, time_steps, input_dim)
input_seq = torch.randn(5, 10, 10)
output = model(input_seq)
print(output.shape)  # 输出形状为 (batch_size, output_dim)

LSTM由于其在处理时间序列数据,尤其是在长序列中保留关键信息的能力,已经在多种自然语言处理任务中取得了显著的成功,例如文本生成、机器翻译和情感分析等。


5. 神经网络方法 - Transformer

file
Transformer 是近年来自然语言处理领域的重要进展,它摒弃了传统的递归和卷积结构,完全依赖自注意力机制来处理序列数据。

Transformer的核心概念

定义:Transformer 是一个基于自注意力机制的深度学习模型,旨在处理序列数据,如文本。其核心是多头自注意力机制,可以捕捉序列中不同位置间的依赖关系,无论它们之间有多远。

多头自注意力:这是 Transformer 的关键部分。每个“头”都学习序列中的不同位置的表示,然后将这些表示组合起来。

位置编码:由于 Transformer 不使用递归或卷积,因此需要额外的位置信息来了解序列中词的位置。位置编码将这种信息添加到序列的每个位置。

例子:考虑句子 “The cat sat on the mat.” 如果我们想强调 “cat” 和 “mat” 之间的关系,多头自注意力机制使 Transformer 可以同时关注 “cat” 和距离较远的 “mat”。

PyTorch中的Transformer

使用 PyTorch,我们可以使用现成的 Transformer 模块来定义一个简单的 Transformer 模型。

import torch.nn as nn
import torchclass TransformerModel(nn.Module):def __init__(self, d_model, nhead, num_encoder_layers, num_decoder_layers):super(TransformerModel, self).__init__()self.transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers)self.fc = nn.Linear(d_model, d_model)  # 示例中的一个简单的线性层def forward(self, src, tgt):output = self.transformer(src, tgt)return self.fc(output)d_model = 512
nhead = 8
num_encoder_layers = 6
num_decoder_layers = 6model = TransformerModel(d_model, nhead, num_encoder_layers, num_decoder_layers)# 示例输入,形状为 (sequence_length, batch_size, d_model)
src = torch.randn(10, 32, d_model)
tgt = torch.randn(20, 32, d_model)output = model(src, tgt)
print(output.shape)  # 输出形状为 (tgt_sequence_length, batch_size, d_model)

Transformer 由于其强大的自注意力机制和并行处理能力,已经在多种自然语言处理任务中取得了突破性的成果,如 BERT、GPT 和 T5 等模型都是基于 Transformer 架构构建的。


6. 大型预训练模型 - GPT文本生成机制

file

近年来,大型预训练模型如 GPT、BERT 和 T5 等已成为自然语言处理领域的标准模型。它们在多种任务上都展现出了卓越的性能,尤其在文本生成任务上。

大型预训练模型的核心概念

定义:大型预训练模型是通过在大量无标签数据上进行预训练的模型,然后在具体任务上进行微调。这种“预训练-微调”范式使得模型能够捕捉到自然语言的丰富表示,并为各种下游任务提供一个强大的起点。

预训练:模型在大规模文本数据上进行无监督学习,如书籍、网页等。此时,模型学习到了词汇、语法和一些常识信息。

微调:在预训练后,模型在特定任务的标记数据上进行有监督学习,如机器翻译、文本生成或情感分析。

例子:考虑 GPT-3,它首先在大量的文本上进行预训练,学习到语言的基本结构和信息。然后,可以用很少的样本或无需任何额外的训练,直接在特定任务上生成文本。


关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/138036.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中尺度混凝土二维有限元求解——运行弯曲、运行光盘、运行比较、运行半圆形(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

YOLOv8快速复现 训练 SCB-Dataset3-S 官网版本 ultralytics

目录 0 相关资料SCB-Dataset3-S 数据训练yaml文件 YOLOv8 训练SCB-Dataset3-S相关参数 0 相关资料 YOLOV8环境安装教程.:https://www.bilibili.com/video/BV1dG4y1c7dH/ YOLOV8保姆级教学视频:https://www.bilibili.com/video/BV1qd4y1L7aX/ b站视频:…

ceph分布式存储

ceph特点 Ceph项目最早起源于Sage就读博士期间的工作(最早的成果于2004年发表),并随后贡献给开源社区。在经过了数年的发展之后,目前已得到众多云计算厂商的支持并被广泛应用。RedHat及OpenStack都可与Ceph整合以支持虚拟机镜像的…

经典指标策略回测一览

编辑 经典指标策略回测一览 关键词 A股市场(沪深京三市) 5000股票20年内日线走势回测,区分除权,前复权,后复权三种模式;由于数据量较大,采用两种方式共享数据,一是 天启网站的数据…

每天几道Java面试题:IO流(第五天)

目录 第五幕 、第一场)街边 友情提醒 背面试题很枯燥,加入一些戏剧场景故事人物来加深记忆。PS:点击文章目录可直接跳转到文章指定位置。 第五幕 、 第一场)街边 【衣衫褴褛老者,保洁阿姨,面试者老王】 衣衫褴褛老…

【数据结构】二叉树的·深度优先遍历(前中后序遍历)and·广度优先(层序遍历)

💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …

CDH 集群离线部署、大数据组件安装与扩容详细步骤(cdh-6.3.1)

一、环境准备 1、服务器配置和角色规划 IP 地址主机名硬件配置操作系统安装步骤10.168.168.1cm-server8C16GCentos7新建10.168.168.2agent018C16GCentos7新建10.168.168.3agent028C16GCentos7新建10.168.168.4agent038C16GCentos7新建10.168.168.5agent048C16GCentos7扩容 2…

七天学会C语言-第五天(函数)

1. 调用有参函数 有参函数是一种接受输入参数(参数值)并执行特定操作的函数。通过向函数传递参数,你可以将数据传递给函数,让函数处理这些数据并返回结果。 例1:编写一程序,要求用户输入4 个数字&#xf…

Innodb底层原理与Mysql日志机制

MySQL内部组件结构 Server层 主要包括连接器、词法分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现&#xff0c…

超级详细 SQL 优化大全

1、MySQL的基本架构 1)MySQL的基础架构图 左边的client可以看成是客户端,客户端有很多,像我们经常你使用的CMD黑窗口,像我们经常用于学习的WorkBench,像企业经常使用的Navicat工具,它们都是一个客户端。右…

Python实现Redis缓存MySQL数据并支持数据同步

简介 本文讲讲如何用Redis做MySQL的读缓存,提升数据库访问性能。 MySQL是一种很常用的关系型数据库,用于持久化数据,并存放在磁盘上。但如果有大数据量的读写,靠MySQL单点就会捉襟见肘,尽管可以在MySQL本身做优化&am…

Qt httpclient

记录一次Qt中处理https请求的操作 构造函数 get onFinished函数: onCompleted是对外的信号,这里接收的数据主要是文本类 post form post json Form 与 Json的差别是http header 的设置 文件下载处理 这里与服务器有个约定,文件长度不能小于…

springboot整合sentinel完成限流

1、直入正题,下载sentinel的jar包 1.1 直接到Sentinel官网里的releases下即可下载最新版本,Sentinel官方下载地址,直接下载jar包即可。不过慢,可能下载不下来 1.2 可以去gitee去下载jar包 1.3 下载完成后,进行打包…

68、Spring Data JPA 的 方法名关键字查询(全自动,既不需要提供sql语句,也不需要提供方法体)

1、方法名关键字查询(全自动,既不需要提供sql语句,也不需要提供方法体) 2、Query查询(半自动:提供 SQL 或 JPQL 查询) 3、自定义查询(全手动) ★ 方法名关键字查询&…

简明 SQL 组合查询指南:掌握 UNION 实现数据筛选

在SQL中,组合查询是一种将多个SELECT查询结果合并的操作,通常使用UNION和UNION ALL两种方式。 UNION 用于合并多个查询结果集,同时去除重复的行,即只保留一份相同的数据。UNION ALL 也用于合并多个查询结果集,但不去除…

3D模型格式转换工具HOOPS Exchange与iBase-t的Solumina集成:支持用户查询与编辑模型

iBase-t是一家软件公司,致力于简化复杂产品的构建和维护。iBase-t 于 1986 年在南加州成立,提供的解决方案可确保全球范围内制造、质量以及维护、修理和大修 (MRO) 运营的数字连续性。iBase-t 的 Solumina 制造运营平台是一种云原生解决方案,…

PX4 通过 Vision 实现 Position、Altitude 和 Offboard 模式

本文通过 VINS-Fusion 的里程计信息为 PX4 提供视觉信息,从而达到 视觉定高和定点 的目的 主要工作为创建一个将 vins 里程计信息发布给 Mavros 的 /mavros/vision_pose/pose 话题 首先创建一个工作空间 mkdir -p ~/catkin_ws/src/vision_to_mavros/src/ cd ~/ca…

贝叶斯滤波计算4d毫米波聚类目标动静属性

机器人学中有些问题是二值问题,对于这种二值问题的概率评估问题可以用二值贝叶斯滤波器binary Bayes filter来解决的。比如机器人前方有一个门,机器人想判断这个门是开是关。这个二值状态是固定的,并不会随着测量数据变量的改变而改变。就像门…

企业架构LNMP学习笔记46

PHP测试连接代码&#xff1a; php代码测试使用memcached&#xff1a; 示例代码&#xff1a; <?php //实例化类 $mem new memcached(); //调用连接memcached方法 注意连接地址和端口号 $mem->addServer(192.168.17.114,11211); //存数据 var_dump($mem->set(name,l…

python基于轻量级卷积神经网络模型开发构建眼疾识别系统

常见的眼疾包括但不限于以下几种&#xff1a; 白内障&#xff1a;白内障是眼睛晶状体变得模糊或不透明&#xff0c;导致视力下降。它通常与年龄相关&#xff0c;但也可以由其他因素引起&#xff0c;如遗传、外伤、糖尿病等。 青光眼&#xff1a;青光眼是一组引起视神经损伤的眼…