【动态规划刷题 16】最长等差数列 (有难度) 等差数列划分 II - 子序列

1027. 最长等差数列

https://leetcode.cn/problems/longest-arithmetic-subsequence/

给你一个整数数组 nums,返回 nums 中最长等差子序列的长度。

回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], …, nums[ik] ,且 0 <= i1 < i2 < … < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]( 0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。

示例 1:

输入:nums = [3,6,9,12]
输出:4
解释:
整个数组是公差为 3 的等差数列。
示例 2:

输入:nums = [9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。
示例 3:

输入:nums = [20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。

1.状态表示*
我们先试着定义一个状态转移数组:
dp[i] 表⽰:以 i 位置元素为结尾的「所有⼦序列」中,最⻓的等差序列的⻓度。
但是这⾥有⼀个⾮常致命的问题,那就是我们⽆法确定 i 结尾的等差序列的样⼦。这样就会导致我们⽆法推导状态转移⽅程,因此我们定义的状态表⽰需要能够确定⼀个等差序列:
dp[i][j] 表⽰:以 i 位置以及 j 位置的元素为结尾的所有的⼦序列中,最⻓的等差序列的⻓度。

2.状态转移方程
设 nums[i] = b, nums[j] = c ,那么这个序列的前⼀个元素就是 a = 2 * b - c 。我们
根据 a 的情况讨论:

  1. a 存在,下标为 k ,并且 a < b :此时我们需要以 k 位置以及 i 位置元素为结尾的最⻓等差序列的⻓度,然后再加上 j 位置的元素即可。于是dp[i][j] = dp[k][i] +1 。这⾥因为会有许多个 k ,我们仅需离 i 最近的 k 即可。因此任何最⻓的都可以以 k 为结尾;
  2. a 存在,但是 b < a < c :此时只能两个元素⾃⼰玩了, dp[i][j] = 2 ;
  3. a 不存在:此时依旧只能两个元素⾃⼰玩了, dp[i][j] = 2 ;

优化:
⼀边 dp ,⼀边保存。这种⽅式,我们仅需保存最近的元素的下标,不⽤保存下标数组。但是⽤这种⽅法的话,我们在遍历顺序那⾥,先固定倒数第⼆个数,再遍历倒数第⼀个数。这样就可以在 i 使⽤完时候,将 nums[i] 扔到哈希表中。

3. 初始化
根据实际情况,可以将所有位置初始化为 2 。

4. 填表顺序
a. 先固定倒数第⼆个数;
b. 然后枚举倒数第⼀个数。

5. 返回值
由于不知道最⻓的结尾在哪⾥,因此返回 dp 表中的最⼤值。

代码:

 int longestArithSeqLength(vector<int>& nums) {int n=nums.size();unordered_map<int,int> hash;hash[nums[0]]=0;//表示的是以 i,j 为结尾的,最长的等差子序列的长度int Max=2;vector<vector<int>>  dp(n,vector<int>(n,2));for(int i=0;i<n;i++)//先固定倒数第二个位置{for(int j=i+1;j<n;j++)//在固定倒数第一个位置{int a=2*nums[i]-nums[j];if(hash.count(a)&&hash[a]<i)dp[i][j]=dp[hash[a]][i]+1;Max=max(Max,dp[i][j]);}hash[nums[i]]=i;}return Max;}

在这里插入图片描述

446. 等差数列划分 II - 子序列

https://leetcode.cn/problems/arithmetic-slices-ii-subsequence/

给你一个整数数组 nums ,返回 nums 中所有 等差子序列 的数目。

如果一个序列中 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该序列为等差序列。

例如,[1, 3, 5, 7, 9]、[7, 7, 7, 7] 和 [3, -1, -5, -9] 都是等差序列。
再例如,[1, 1, 2, 5, 7] 不是等差序列。
数组中的子序列是从数组中删除一些元素(也可能不删除)得到的一个序列。

例如,[2,5,10] 是 [1,2,1,2,4,1,5,10] 的一个子序列。
题目数据保证答案是一个 32-bit 整数。

示例 1:

输入:nums = [2,4,6,8,10]
输出:7
解释:所有的等差子序列为:
[2,4,6]
[4,6,8]
[6,8,10]
[2,4,6,8]
[4,6,8,10]
[2,4,6,8,10]
[2,6,10]
示例 2:

输入:nums = [7,7,7,7,7]
输出:16
解释:数组中的任意子序列都是等差子序列。

1.状态表示*
我们先试着定义一个状态转移数组:
dp[i] 表⽰:以 i 位置元素为结尾的「所有⼦序列」中,最⻓的等差序列的⻓度。
但是这⾥有⼀个⾮常致命的问题,那就是我们⽆法确定 i 结尾的等差序列的样⼦。这样就会导致我们⽆法推导状态转移⽅程,因此我们定义的状态表⽰需要能够确定⼀个等差序列:
dp[i][j] 表⽰:以 i 位置以及 j 位置的元素为结尾的所有的⼦序列中,等差⼦序列的个数。

2.状态转移方程
设 nums[i] = b, nums[j] = c ,那么这个序列的前⼀个元素就是 a = 2 * b - c 。我们
根据 a 的情况讨论:

  1. a 存在,下标为 k ,并且 a < b :此时我们需要以 k 位置以及 i 位置元素为结尾的最⻓等差序列的⻓度,然后再加上 j 位置的元素即可。于是dp[i][j] = dp[k][i] +1 。这⾥因为会有许多个 k ,我们仅需离 i 最近的 k 即可。因此任何最⻓的都可以以 k 为结尾;
  2. b. 因为 a 可能有很多个,我们需要全部累加起来

综上, dp[i][j] += dp[k][i] + 1 。

优化:
优化点:我们发现,在状态转移⽅程中,我们需要确定 a 元素的下标。因此我们可以在 dp 之前,将
所有元素 +下标数组绑定在⼀起,放到哈希表中。这⾥为何要保存下标数组,是因为我们要统计个
数,所有的下标都需要统计。
3. 初始化
刚开始是没有等差数列的,因此初始化 dp 表为 0
4. 填表顺序
a. 先固定倒数第⼆个数;
b. 然后枚举倒数第⼀个数。

5. 返回值
我们要统计所有的等差⼦序列,因此返回 dp 表中所有元素的和。

代码:

int numberOfArithmeticSlices(vector<int>& nums) {int n=nums.size();unordered_map<long long,vector<int>> hash;for(int i=0;i<n;i++){hash[nums[i]].push_back(i);}int sum=0;vector<vector<int>> dp(n,vector<int>(n));for(int j=2;j<n;j++){for(int i=1;i<j;i++){long long a=(long long)2*nums[i]-nums[j];if(hash.count(a)){for(auto e:hash[a]){if(e<i) { dp[i][j]+=dp[e][i]+1;}else break;}}sum+=dp[i][j];}}return sum;}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/138094.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Cloud Alibaba Nacos 2.2.3 (2) - 单机版启动 (winodows 和 linux )

Nacos 2.2.3 (1) - 下载与数据库配置 参考下载与数据库配置 启动服务器 执行 nacos-server-2.2.3\bin 下的startup.sh或者startup.cmd &#xff08;根据不同系统&#xff09; windows 下nacos 单机启动 方式一&#xff1a; 1&#xff0c;打开cmd 2&#xff0c;cd 到nacos-s…

什么是虚拟DOM(Virtual DOM)?它在前端框架中的作用是什么?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 什么是虚拟DOM&#xff08;Virtual DOM&#xff09;&#xff1f;⭐ 虚拟DOM 在前端框架中的作用⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&…

sudo apt-get update失败的原因和解决方法

ubuntu更新资源包时出现连接超时的问题&#xff1a; 无法发起与 cn.archive.ubuntu.com:80 (2403:2c80:5::6) 的连接 - connect (101: 网络不可达) 无法连接上 cn.archive.ubuntu.com:80 (45.125.0.6)&#xff0c;连接超时 正在读取软件包列表… 完成 W: 无法下载 http://cn.ar…

Vue路由和Node.js环境搭建

文章目录 一、vue路由1.1 简介1.2 SPA1.3 实例 二、Node.js环境搭建2.1 Node.js简介2.2 npm2.3 环境搭建2.3.1 下载解压2.3.2 配置环境变量2.3.3 配置npm全局模块路径和cache默认安装位置2.3.4 修改npm镜像提高下载速度 2.4 运行项目 一、vue路由 1.1 简介 Vue 路由是 Vue.js…

使用GPT训练中秋古诗写作讲解

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师…

PyTorch C++ 前端:张量

本篇文章将尝试了解 PyTorch 组件的高级概述以及它们如何配合。 PyTorch 组件的高级概述 后端 PyTorch 后端是用 C++ 编写的,它提供 API 来访问高度优化的库,例如:用于高效矩阵运算的张量库、用于执行 GPU 运算的 CUDA 库以及用于梯度计算的自动微分等。 前端 可以使用…

如何通过百度SEO优化提升网站排名(掌握基础概念,实现有效优化)

随着互联网的发展&#xff0c;搜索引擎优化&#xff08;SEO&#xff09;成为了网站优化中不可或缺的一部分。在中国&#xff0c;百度搜索引擎占据着主导地位&#xff0c;因此掌握百度SEO概念和优化技巧对网站的排名和曝光非常重要。 百度SEO排名的6个有效方法&#xff1a; 首…

前后端分离的低代码快速开发框架

低代码开发正逐渐成为企业创新的关键工具。通过提高开发效率、降低成本、增强灵活性以及满足不同用户需求&#xff0c;低代码开发使企业能够快速响应市场需求&#xff0c;提供创新解决方案。选择合适的低代码平台&#xff0c;小成本组建一个专属于你的应用。 项目简介 这是一个…

PHP通过pem文件校验签名异常

问题描述&#xff1a; 在对接第三方支付过程中&#xff0c;支付成功异步回调时&#xff0c;校验签名&#xff0c;一直无法通过。 但是在支付成功时有一个同步返回也需要校验签名&#xff0c;用的是同样的校验方法&#xff0c;都没有问题。 当把回调时传递的参数放在postman中&a…

测试域: 流量回放-工具篇jvm-sandbox,jvm-sandbox-repeater,gs-rest-service

JVM-Sandbox Jvm-Sandbox-Repeater架构_小小平不平凡的博客-CSDN博客 https://www.cnblogs.com/hong-fithing/p/16222644.html 流量回放框架jvm-sandbox-repeater的实践_做人&#xff0c;最重要的就是开心嘛的博客-CSDN博客 [jvm-sandbox-repeater 学习笔记][入门使用篇] 2…

MYSQL存储引擎基础知识介绍

下面重点介绍几种常用的存储引擎,并对比各个存储引擎之间的区别&#xff0c;以帮助读者理解 不同存储引擎的使用方式。 MyISAM MyISAM是 MySQL的默认存储引擎。MyISAM不支持事务、也不支持外键&#xff0c;其优势是访 问的速度快&#xff0c;对事务完整性没有要求或者以 SEL…

java面向对象(八)

文章目录 一、abstract关键字的使用1.概念2. abstract修饰类:抽象类3.abstract修饰方法&#xff0c;抽象方法4.abstract使用上的注意点&#xff1a;5.抽象类的匿名子类 二、计算一段代码执行所花费的时间三、接口的使用1.接口的使用2.定义接口中的成员3.代码demo4.Java类可以实…

stm32学习-芯片系列/选型/开发方式

【03】STM32HAL库开发-初识STM32 | STM概念、芯片分类、命名规则、选型 | STM32原理图设计、看数据手册、最小系统的组成 、STM32IO分配_小浪宝宝的博客-CSDN博客  STM32&#xff1a;ST是意法半导体&#xff0c;M是MCU/MPU&#xff0c;32是32位。  ST累计推出了&#xff1a…

爬虫 — App 爬虫(一)

目录 一、介绍二、APP 爬虫常见反爬三、APP 抓包常用工具四、模拟器五、安装 APP1、下载 APP2、安装 APP 六、fiddler1、工作原理2、安装3、基本介绍 七、环境配置1、fiddler 的配置2、夜神模拟器的配置 八、案例 一、介绍 爬虫分类——数据来源 1、PC 端爬虫&#xff08;网页…

Linux 打包压缩命令

目前 linux 中打包和压缩的命令很多&#xff0c;最常用的方法有 zip、gzip、bzip2、xz、tar 1.zip 压缩包 //制作 //-r 递归 表示将指定的目录下的所有子目录以及文件一起处理 zip -r public.zip public//解压 unzip public.zip unzip public.zip -d dir//查看 unzip -l publi…

Android嵌套事务

这时候旋转设备还是会重置秒表。旋转设备时Android会重新创建活动。如果你的活动包含一个 < fragment >元素&#xff0c;每次重新创建活动时&#xff0c;它会重新插入片段的一个新版本。老片段被丢掉&#xff0c;所有实例变量会设置其初始值。在这个特定的例子中&#xf…

Matlab图像处理-HSI模型

HSI模型 HSI模型是从人的视觉系统出发&#xff0c;直接使用颜色三要素色调(Hue)、饱和度(Saturation)和亮度&#xff08;Intensity&#xff09;来描述颜色。 亮度是指人眼感知光线的明暗程度。光的能量越大&#xff0c;亮度就越大。 色调是颜色最重要的属性。 它决定了颜色的…

基于51单片机多路DTH11温湿度检测控制系统

一、系统方案 1、本设计采用51单片机作为主控器。 2、DHT11采集温度度&#xff0c;支持3路温度度&#xff0c;液晶1602显示。 3、按键设置报警阀值。 4、系统声光报警。 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 //初始化LCD*********…

Chinese-LLaMA-AIpaca

文章目录 关于 Chinese-LLaMA-Alpaca一、LLaMA模型 --> HF格式二、合并LoRA权重,生成全量模型权重方式1:单LoRA权重合并方式2:多LoRA权重合并(适用于Chinese-Alpaca-Plus )三、使用 Transformers 进行推理四、使用 webui 搭建界面1、克隆text-generation-webui并安装必…

如何向PDB文件添加双键

在用PDB文件进行分子绘图的时候&#xff08;制作OBJ&#xff09;&#xff0c;发现像Atomic blender插件和PDB本身并不支持双键&#xff0c;需要对PDB文件进行修改&#xff0c;参照的该yt链接https://www.youtube.com/watch?vYNoow7qkwFA&t364s&ab_channelEdvinFako 即…